Abstract

Vaginal childbirth is the final phase of pregnancy when one or more fetuses pass through the birth canal from the uterus, and it is a biomechanical process. The uterine active contraction, causing the pushing force on the fetus, plays a vital role in regulating the fetus delivery process. In this project, the active contraction behaviors of muscle tissue were first modeled and investigated. After that, a finite element method (FEM) model to simulate the uterine cyclic active contraction and delivery of a fetus was developed in ls-dyna. The active contraction was driven through contractile fibers modeled as one-dimensional truss elements, with the Hill material model governing their response. Fibers were assembled in the longitudinal, circumferential, and normal (transverse) directions to correspond to tissue microstructure, and they were divided into seven regions to represent the strong anisotropy of the fiber distribution and activity within the uterus. The passive portion of the uterine tissue was modeled with a Neo Hookean hyperelastic material model. Three active contraction cycles were modeled. The cyclic uterine active contraction behaviors were analyzed. Finally, the fetus delivery through the uterus was simulated. The model of the uterine active contraction presented in this paper modeled the contractile fibers in three-dimensions, considered the anisotropy of the fiber distribution, provided the uterine cyclic active contraction and propagation of the contraction waves, performed a large deformation, and caused the pushing effect on the fetus. This model will be combined with a model of pelvic structures so that a complete system simulating the second stage of the delivery process of a fetus can be established.

References

1.
Alrubaii
,
B. J.
,
2005
, “
Lack of Progress in Labour as a Reason for Cesarean
,”
Med. J. Babylon
,
2
(
1
), pp.
589
595
. 10.1016/S0029-7844(99)00575-X
2.
Myers
,
K. M.
, and
Elad
,
D.
,
2017
, “
Biomechanics of the Human Uterus
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
,
9
(
5
), pp.
1
20
.10.1002/wsbm.1388
3.
Pino
,
J. H.
,
2017
, “
Arrangement of Muscle Fibers in the Myometrium of the Human Uterus: A Mesoscopic Study
,”
MOJ Anat. Physiol.
,
4
(
2
), pp.
131
135
.10.15406/mojap.2017.04.00131
4.
Fujimoto
,
K.
,
Kido
,
A.
,
Okada
,
T.
,
Uchikoshi
,
M.
, and
Togashi
,
K.
,
2013
, “
Diffusion Tensor Imaging (DTI) of the Normal Human Uterus In Vivo at 3 Tesla: Comparison of DTI Parameters in the Different Uterine Layers
,”
J. Magn. Reson. Imaging
,
38
(
6
), pp.
1494
1500
.10.1002/jmri.24114
5.
Fiocchi
,
F.
,
Nocetti
,
L.
,
Siopis
,
E.
,
Currà
,
S.
,
Costi
,
T.
,
Ligabue
,
G.
, and
Torricelli
,
P.
,
2012
, “
In Vivo 3T MR Diffusion Tensor Imaging for Detection of the Fibre Architecture of the Human Uterus: A Feasibility and Quantitative Study
,”
Br. J. Radiol.
,
85
(
1019
), pp.
e1009
e1017
.10.1259/bjr/76693739
6.
Weiss
,
S.
,
Jaermann
,
T.
,
Schmid
,
P.
,
Staempfli
,
P.
,
Boesiger
,
P.
,
Niederer
,
P.
,
Caduff
,
R.
, and
Bajka
,
M.
,
2006
, “
Three-Dimensional Fiber Architecture of the Nonpregnant Human Uterus Determined Ex Vivo Using Magnetic Resonance Diffusion Tensor Imaging
,”
Anat. Rec. - Part A Discov. Mol., Cellular, Evol. Biol.
,
288A
(
1
), pp.
84
90
.10.1002/ar.a.20274
7.
McLean
,
J. P.
,
Fang
,
S.
,
Gallos
,
G.
,
Myers
,
K. M.
, and
Hendon
,
C. P.
,
2020
, “
Three-Dimensional Collagen Fiber Mapping and Tractography of Human Uterine Tissue Using OCT
,”
Biomed. Opt. Express
,
11
(
10
), p.
5518
.10.1364/BOE.397041
8.
Fang
,
S.
,
McLean
,
J.
,
Shi
,
L.
,
Vink
,
J. S. Y.
,
Hendon
,
C. P.
, and
Myers
,
K. M.
,
2021
, “
Anisotropic Mechanical Properties of the Human Uterus Measured by Spherical Indentation
,”
Ann. Biomed. Eng.
,
49
(
8
), pp.
1923
1942
.10.1007/s10439-021-02769-0
9.
He
,
Y.
,
Ding
,
N.
,
Li
,
Y.
,
Li
,
Z.
,
Xiang
,
Y.
,
Jin
,
Z.
, and
Xue
,
H.
,
2015
, “
3-T Diffusion Tensor Imaging (DTI) of Normal Uterus in Young and Middle-Aged Females During the Menstrual Cycle: Evaluation of the Cyclic Changes of Fractional Anisotropy (FA) and Apparent Diffusion Coefficient (ADC) Values
,”
Br. J. Radiol.
,
88
(
1049
), p.
20150043
.10.1259/bjr.20150043
10.
Grimm
,
M. J.
,
2021
, “
Forces Involved With Labor and Delivery—A Biomechanical Perspective
,”
Ann. Biomed. Eng.
,
49
(
8
), pp.
1819
1835
.10.1007/s10439-020-02718-3
11.
Smith
,
R.
,
Imtiaz
,
M.
,
Banney
,
D.
,
Paul
,
J. W.
, and
Young
,
R. C.
,
2015
, “
Why the Heart is Like an Orchestra and the Uterus is Like a Soccer Crowd
,”
Am. J. Obstet. Gynecol.
,
213
(
2
), pp.
181
185
.10.1016/j.ajog.2015.06.040
12.
Steer
,
P. J.
,
Little
,
D. J.
,
Lewis
,
N. L.
,
Kelly
,
M. C. M. E.
, and
Beard
,
R. W.
,
1975
, “
Uterine Activity in Induced Labour
,”
BJOG
,
82
(
6
), pp.
433
441
.10.1111/j.1471-0528.1975.tb00666.x
13.
Caldeyro-Barcia
,
R.
,
Alvarez
,
H.
, and
Poseiro
,
J. J.
,
1955
, “
Normal and Abnormal Uterine Contractility in Labour
,”
Triangle
,
2
(
41
).
14.
Yao
,
W.
,
Yoshida
,
K.
,
Fernandez
,
M.
,
Vink
,
J.
,
Wapner
,
R. J.
,
Ananth
,
C. V.
,
Oyen
,
M. L.
, and
Myers
,
K. M.
,
2014
, “
Measuring the Compressive Viscoelastic Mechanical Properties of Human Cervical Tissue Using Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
18
26
.10.1016/j.jmbbm.2014.01.016
15.
Fodera
,
D. M.
,
Russell
,
S. R.
,
Jackson
,
J. L. L.
,
Fang
,
S.
,
Chen
,
X.
,
Vink
,
J.
,
Oyen
,
M. L.
, and
Myers
,
K. M.
,
2023
, “
Material Properties of Nonpregnant and Pregnant Human Uterine Layers
,”
J. Mech. Behav. Biomed. Mater.
,
151
, p.
106348
.10.1016/j.jmbbm.2023.106348
16.
Myers
,
K. M.
,
Socrate
,
S.
,
Paskaleva
,
A.
, and
House
,
M.
,
2010
, “
A Study of the Anisotropy and Tension/Compression Behavior of Human Cervical Tissue
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
021003
.10.1115/1.3197847
17.
Shi
,
L.
, and
Myers
,
K.
,
2023
, “
A Finite Porous-Viscoelastic Model Capturing Mechanical Behavior of Human Cervix Under Multi-Step Spherical Indentation
,”
J. Mech. Behav. Biomed. Mater.
, 143, p.
105875
.10.1016/j.jmbbm.2023.105875
18.
Shi
,
L.
,
Hu
,
L.
,
Lee
,
N.
,
Fang
,
S.
, and
Myers
,
K.
,
2022
, “
Three-Dimensional Anisotropic Hyperelastic Constitutive Model Describing the Mechanical Response of Human and Mouse Cervix
,”
Acta Biomater.
,
150
, pp.
277
294
.10.1016/j.actbio.2022.07.062
19.
Westervelt
,
A. R.
,
Fernandez
,
M.
,
House
,
M.
,
Vink
,
J.
,
Nhan-Chang
,
C. L.
,
Wapner
,
R.
, and
Myers
,
K. M.
,
2017
, “
A Parameterized Ultrasound-Based Finite Element Analysis of the Mechanical Environment of Pregnancy
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051004
.10.1115/1.4036259
20.
Westervelt
,
A. R.
, and
Myers
,
K. M.
,
2017
, “
Computer Modeling Tools to Understand the Causes of Preterm Birth
,”
Semin. Perinatol.
,
41
(
8
), pp.
485
492
.10.1053/j.semperi.2017.08.007
21.
Scott
,
A. K.
,
Louwagie
,
E. M.
,
Myers
,
K. M.
, and
Oyen
,
M. L.
,
2023
, “
Biomechanical Modeling of Cesarean Section Scars and Scar Defects
,” bioRxiv.10.1101/2023.11.03.565565
22.
Koh
,
C. T.
, and
Oyen
,
M. L.
,
2015
, “
Toughening in Electrospun Fibrous Scaffolds
,”
APL Mater
,
3
(
1
), p.
014908
.10.1063/1.4901450
23.
Clark
,
A. R.
,
Yoshida
,
K.
, and
Oyen
,
M. L.
,
2022
, “
Computational Modeling in Pregnancy Biomechanics Research
,”
J. Mech. Behav. Biomed. Mater.
,
128
, p.
105099
.10.1016/j.jmbbm.2022.105099
24.
Parente
,
M. P. L.
,
Natal Jorge
,
R. M.
,
Mascarenhas
,
T.
,
Fernandes
,
A. A.
, and
Martins
,
J. A. C.
,
2009
, “
The Influence of the Material Properties on the Biomechanical Behavior of the Pelvic Floor Muscles During Vaginal Delivery
,”
J. Biomech.
,
42
(
9
), pp.
1301
1306
.10.1016/j.jbiomech.2009.03.011
25.
Xuan
,
R.
,
Yang
,
M.
,
Gao
,
Y.
,
Ren
,
S.
,
Li
,
J.
,
Yang
,
Z.
,
Song
,
Y.
,
Huang
,
X. H.
,
Teo
,
E. C.
,
Zhu
,
J.
, and
Gu
,
Y.
,
2021
, “
A Simulation Analysis of Maternal Pelvic Floor Muscle
,”
Int. J. Environ. Res. Public Health
,
18
(
20
), p.
10821
.10.3390/ijerph182010821
26.
Buttin
,
R.
,
Zara
,
F.
,
Shariat
,
B.
, and
Redarce
,
T.
,
2009
, “
A Biomechanical Model of the Female Reproductive System and the Fetus for the Realization of a Childbirth Virtual Simulator
,”
31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
, Minneapolis, MN, Sept. 2–6, pp.
5263
5266
.10.1109/IEMBS.2009.5334085
27.
Buttin
,
R.
,
Zara
,
F.
,
Shariat
,
B.
,
Redarce
,
T.
,
Buttin
,
R.
,
Zara
,
F.
,
Shariat
,
B.
, et al.,
2013
, “
Biomechanical Simulation of the Fetal Descent Without Imposed Theoretical Trajectory
,”
Comput. Methods. Programs. Biomed.
,
111
(
2
), pp.
389
401
.10.1016/j.cmpb.2013.04.005
28.
Cochran
,
A. L.
, and
Gao
,
Y.
,
2015
, “
A Model and Simulation of Uterine Contractions
,”
Math. Mech. Solids
,
20
(
5
), pp.
540
564
.10.1177/1081286513507940
29.
Yochum
,
M.
,
Laforet
,
J.
, and
Marque
,
C.
,
2016
, “
An Electro-Mechanical Multiscale Model of Uterine Pregnancy Contraction
,”
Comput. Biol. Med.
,
77
, pp.
182
194
.10.1016/j.compbiomed.2016.08.001
30.
Vila Pouca
,
M. C. P.
,
Ferreira
,
J. P. S.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Mascarenhas
,
M. T.
, and
Natal Jorge
,
R. M.
,
2019
, “
Simulation of the Uterine Contractions and Foetus Expulsion Using a Chemo-Mechanical Constitutive Model
,”
Biomech. Model. Mechanobiol.
,
18
(
3
), pp.
829
843
.10.1007/s10237-019-01117-5
31.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London. Ser. B
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
32.
Bates
,
J. H. T.
, and
Lauzon
,
A.-M.
,
2007
, “
Parenchymal Tethering, Airway Wall Stiffness, and the Dynamics of Bronchoconstriction
,”
J. Appl. Physiol.
,
102
(
5
), pp.
1912
1920
.10.1152/japplphysiol.00980.2006
33.
Murphy
,
R. A.
,
1988
, “
Muscle Cells of Hollow Organs
,”
Physiology
,
3
(
3
), pp.
124
128
.10.1152/physiologyonline.1988.3.3.124
34.
Östh
,
J.
,
2014
,
Muscle Responses of Car Occupants: Numerical Modeling and Volunteer Experiments Under Pre-Crash Braking Conditions
,
Chalmers Tekniska Hogskola
,
Sweden
.
35.
Bamberg
,
C.
,
Rademacher
,
G.
,
Güttler
,
F.
,
Teichgräber
,
U.
,
Cremer
,
M.
,
Bührer
,
C.
,
Spies
,
C.
, et al.,
2012
, “
Human Birth Observed in Real-Time Open Magnetic Resonance Imaging
,”
Am. J. Obstet. Gynecol.
,
206
(
6
), pp.
505-e1
505.e6
.10.1016/j.ajog.2012.01.011
36.
Zhang
,
W.
, and
Chen
,
J.
,
2020
, “
Diffusion Tensor Imaging (DTI) of the Cesarean-Scarred Uterus In Vivo at 3T: Comparison Study of DTI Parameters Between Nonpregnant and Pregnant Cases
,”
J. Magn. Reson. Imaging
,
51
(
1
), pp.
124
130
.10.1002/jmri.26868
37.
Dubrauszky
,
V.
,
Schwalm
,
H.
, and
Fleischer
,
M.
,
1971
, “
The Fibre System of Connective Tissue in the Childbearing Age, Menopause, and Pregnancy
,”
Arch. Gynakol.
,
210
(
3
), pp.
276
292
.10.1007/BF00667740
38.
Östh
,
J.
,
Brolin
,
K.
, and
Bråse
,
D.
,
2015
, “
A Human Body Model With Active Muscles for Simulation of Pretensioned Restraints in Autonomous Braking Interventions
,”
Traffic Inj. Prev.
,
16
(
3
), pp.
304
313
.10.1080/15389588.2014.931949
39.
Abalos
,
E.
,
Oladapo
,
O. T.
,
Chamillard
,
M.
,
Díaz
,
V.
,
Pasquale
,
J.
,
Bonet
,
M.
,
Souza
,
J. P.
, and
Gülmezoglu
,
A. M.
,
2018
, “
Duration of Spontaneous Labour in ‘Low-Risk’ Women With ‘Normal’ Perinatal Outcomes: A Systematic Review
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
223
, pp.
123
132
.10.1016/j.ejogrb.2018.02.026
40.
Lindgren
,
L.
,
1960
, “
The Causes of Foetal Head Moulding in Labour
,”
Acta Obstet. Gynecol. Scand.
,
39
(
1
), pp.
46
62
.10.3109/00016346009157836
41.
Tao
,
R.
, and
Grimm
,
M. J.
,
2024
, “
Simulation of the Childbirth Process in LS-DYNA
,”
ASME J. Biomech. Eng.
,
146
(
6
), p.
061002
.10.1115/1.4064594
You do not currently have access to this content.