Abstract

Mechanical circulatory support (MCS) device therapy is one of the primary treatment options for end-stage heart failure (HF), whereby a mechanical pump is integrated with the failing heart to maintain adequate tissue perfusion. The ISO 14708-5:2020 standard prescribes generic guidelines for nonclinical device evaluation and system performance testing of MCS devices using a mock circulatory loop (MCL). However, the utility of MCLs in premarket regulatory submissions of MCS devices is ambiguous, and the specific disease states that the device is intended to treat are not usually simulated. Hence, we aim to outline the potential of MCLs as a valuable regulatory science tool for characterizing MCS device systems by adequately representing target clinical-use HF conditions on the bench. Target pathophysiologic hemodynamics of HF conditions (i.e., cardiogenic shock (CS), left ventricular (LV) hypertrophy secondary to hypertension, and coronary artery disease), along with a healthy adult at rest and a healthy adult during exercise are provided as recommended test conditions. The conditions are characterized based on LV, aorta, and left atrium pressures using recommended cardiac hemodynamic indices such as systolic, diastolic, and mean arterial pressure, mean cardiac output (CO), cardiac cycle time, and systemic vascular resistance. This study is a first step toward standardizing MCLs to generate well-defined target HF conditions used to evaluate MCS devices.

References

1.
Tsao
,
C. W.
,
Aday
,
A. W.
,
Almarzooq
,
Z. I.
,
Anderson
,
C. A. M.
,
Arora
,
P.
,
Avery
,
C. L.
,
Baker-Smith
,
C. M.
,
Beaton
,
A. Z.
,
Boehme
,
A. K.
,
Buxton
,
A. E.
,
Commodore-Mensah
,
Y.
,
Elkind
,
M. S. V.
,
Evenson
,
K. R.
,
Eze-Nliam
,
C.
,
Fugar
,
S.
,
Generoso
,
G.
,
Heard
,
D. G.
,
Hiremath
,
S.
,
Ho
,
J. E.
,
Kalani
,
R.
,
Kazi
,
D. S.
,
Ko
,
D.
,
Levine
,
D. A.
,
Liu
,
J.
,
Ma
,
J.
,
Magnani
,
J. W.
,
Michos
,
E. D.
,
Mussolino
,
M. E.
,
Navaneethan
,
S. D.
,
Parikh
,
N. I.
,
Poudel
,
R.
,
Rezk-Hanna
,
M.
,
Roth
,
G. A.
,
Shah
,
N. S.
,
St-Onge
,
M.-P.
,
Thacker
,
E. L.
,
Virani
,
S. S.
,
Voeks
,
J. H.
,
Wang
,
N.-Y.
,
Wong
,
N. D.
,
Wong
,
S. S.
,
Yaffe
,
K.
, and
Martin
,
S. S.
,
American Heart Association Council on Epidemiology and Prevention Statistics Committee
, and
Stroke Statistics Subcommittee
,
2023
, “
Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association
,”
Circulation
,
147
(
8
), pp.
e93
e621
.10.1161/CIR.0000000000001123
2.
Bozkurt
,
S.
,
van de Vosse
,
F. N.
, and
Rutten
,
M. C.
,
2014
, “
Improving Arterial Pulsatility by Feedback Control of a Continuous Flow Left Ventricular Assist Device via In Silico Modeling
,”
Int. J. Artif. Organs
,
37
(
10
), pp.
773
785
.10.5301/ijao.5000328
3.
Kurmani
,
S.
, and
Squire
,
I.
,
2017
, “
Acute Heart Failure: Definition, Classification and Epidemiology
,”
Curr. Heart Failure Rep.
,
14
(
5
), pp.
385
392
.10.1007/s11897-017-0351-y
4.
Rogers
,
C.
, and
Bush
,
N.
,
2015
, “
Heart Failure: Pathophysiology, Diagnosis, Medical Treatment Guidelines, and Nursing Management
,”
Nurs. Clin. North Am.
,
50
(
4
), pp.
787
799
.10.1016/j.cnur.2015.07.012
5.
Han
,
J. J.
,
Acker
,
M. A.
, and
Atluri
,
P.
,
2018
, “
Left Ventricular Assist Devices
,”
Circulation
,
138
(
24
), pp.
2841
2851
.10.1161/CIRCULATIONAHA.118.035566
6.
Stewart
,
G. C.
, and
Stevenson
,
L. W.
,
2011
, “
Keeping Left Ventricular Assist Device Acceleration on Track
,”
Circulation
,
123
(
14
), pp.
1559
1568
.10.1161/CIRCULATIONAHA.110.982512
7.
Maisel
,
W. H.
,
2010
,
Device Therapy in Heart Failure
,
Humana Press
,
New York
.
8.
FDA Medical Device Recalls
,
2018
, “
Abbott Recalls the HeartMate 3™ Left Ventricular Assist System Due to Potential Malfunction That May Lead to Graft Occlusion
,” U.S. Food and Drug Administration, Silver Spring, MD.
9.
FDA Medical Device Recalls,
2018
, “
Medtronic HeartWare HVAD System Recalled Due to Unintended Intermittent Electrical Disconnection Between the Power Source and the Controller
,” U.S. Food and Drug Administration, Silver Spring, MD.
10.
Bedi
,
N.
,
2021
, “
Thousands of Patients Were Implanted With Heart Pumps That the FDA Knew Could Be Dangerous
,” ProPublica, New York.
11.
ISO
,
2020
, “
Implants for Surgery—Active Implantable Medical Devices—Part 5: Circulatory Support Devices
,” ISO, Geneva, Switzerland, Standard No. 14708-5.
12.
Chang
,
T.-I.
,
Hsu
,
K.-H.
,
Luo
,
C.-W.
,
Yen
,
J.-H.
,
Lu
,
P.-C.
, and
Chang
,
C.-I.
,
2020
, “
In Vitro Study of Trileaflet Polytetrafluoroethylene Conduit and Its Valve-in-Valve Transformation
,”
Interact. Cardiovasc. Thorac. Surg.
,
30
(
3
), pp.
408
416
.10.1093/icvts/ivz274
13.
Glynn
,
J.
,
Song
,
H.
,
Hull
,
B.
,
Withers
,
S.
,
Gelow
,
J.
,
Mudd
,
J.
,
Starr
,
A.
, and
Wampler
,
R.
,
2017
, “
The OregonHeart Total Artificial Heart: Design and Performance on a Mock Circulatory Loop
,”
Artif. Organs
,
41
(
10
), pp.
904
910
.10.1111/aor.12959
14.
Gregory
,
S. D.
,
Pauls
,
J. P.
,
Wu
,
E. L.
,
Stephens
,
A.
,
Steinseifer
,
U.
,
Tansley
,
G.
, and
Fraser
,
J. F.
,
2020
, “
An Advanced Mock Circulation Loop for In Vitro Cardiovascular Device Evaluation
,”
Artif. Organs
,
44
(
6
), pp.
E238
E250
.10.1111/aor.13636
15.
Pantalos
,
G. M.
,
Koenig
,
S. C.
,
Gillars
,
K. J.
,
Giridharan
,
G. A.
, and
Ewert
,
D. L.
,
2004
, “
Characterization of an Adult Mock Circulation for Testing Cardiac Support Devices
,”
ASAIO J.
,
50
(
1
), pp.
37
46
.10.1097/01.MAT.0000104818.70726.E6
16.
Petrou
,
A.
,
Granegger
,
M.
,
Meboldt
,
M.
, and
Schmid Daners
,
M.
,
2019
, “
A Versatile Hybrid Mock Circulation for Hydraulic Investigations of Active and Passive Cardiovascular Implants
,”
ASAIO J.
,
65
(
5
), pp.
495
502
.10.1097/MAT.0000000000000851
17.
Wu
,
C.
,
Retta
,
S. M.
,
Robinson
,
R. A.
,
Herman
,
B. A.
, and
Grossman
,
L. W.
,
2009
, “
A Novel Study of Mechanical Heart Valve Cavitation in a Pressurized Pulsatile Duplicator
,”
ASAIO J.
,
55
(
5
), pp.
445
451
.10.1097/MAT.0b013e3181b4c44f
18.
Young
,
E.
,
Chen
,
J.-F.
,
Dong
,
O.
,
Gao
,
S.
,
Massiello
,
A.
, and
Fukamachi
,
K.
,
2011
, “
Transcatheter Heart Valve With Variable Geometric Configuration: In Vitro Evaluation
,”
Artif. Organs
,
35
(
12
), pp.
1151
1159
.10.1111/j.1525-1594.2011.01331.x
19.
Biglino
,
G.
,
Giardini
,
A.
,
Baker
,
C.
,
Figliola
,
R. S.
,
Hsia
,
T.-Y.
,
Taylor
,
A. M.
,
Schievano
,
S.
, and
Group
,
M. C.
,
2012
, “
In Vitro Study of the Norwood Palliation: A Patient-Specific Mock Circulatory System
,”
ASAIO J.
,
58
(
1
), pp.
25
31
.10.1097/MAT.0b013e3182396847
20.
D'Souza
,
G. A.
,
Banerjee
,
R. K.
, and
Taylor
,
M. D.
,
2018
, “
Evaluation of Pulmonary Artery Stenosis in Congenital Heart Disease Patients Using Functional Diagnostic Parameters: An In Vitro Study
,”
J. Biomech.
,
81
, pp.
58
67
.10.1016/j.jbiomech.2018.09.014
21.
Figliola
,
R. S.
,
Giardini
,
A.
,
Conover
,
T.
,
Camp
,
T. A.
,
Biglino
,
G.
,
Chiulli
,
J.
, and
Hsia
,
T. Y.
,
2010
, “
In Vitro Simulation and Validation of the Circulation With Congenital Heart Defects
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
71
80
.10.1016/j.ppedcard.2010.09.009
22.
Meess
,
K.
,
Izzo
,
R.
,
Dryjski
,
M.
,
Curl
,
R.
,
Harris
,
L.
,
Springer
,
M.
,
Siddiqui
,
A.
,
Rudin
,
S.
, and
Ionita
,
C.
,
2017
, “
3D Printed Abdominal Aortic Aneurysm Phantom for Image Guided Surgical Planning With a Patient Specific Fenestrated Endovascular Graft System
,”
Proc. SPIE.
,
101380
, p.
101380P
.10.1117/12.2253902
23.
Trusty
,
P. M.
,
Tree
,
M.
,
Vincent
,
D.
,
Naber
,
J. P.
,
Maher
,
K.
,
Yoganathan
,
A. P.
, and
Deshpande
,
S. R.
,
2019
, “
In Vitro Examination of the VentriFlo True Pulse Pump for Failing Fontan Support
,”
Artif. Organs
,
43
(
2
), pp.
181
188
.10.1111/aor.13301
24.
Timms
,
D.
,
Hayne
,
M.
,
McNeil
,
K.
, and
Galbraith
,
A.
,
2005
, “
A Complete Mock Circulation Loop for the Evaluation of Left, Right, and Biventricular Assist Devices
,”
Artif. Organs
,
29
(
7
), pp.
564
572
.10.1111/j.1525-1594.2005.29094.x
25.
Packy
,
A.
,
D'Souza
,
G. A.
,
Farahmand
,
M.
,
Herbertson
,
L.
, and
Scully
,
C. G.
,
2022
, “
Simulating Radial Pressure Waveforms With a Mock Circulatory Flow Loop to Characterize Hemodynamic Monitoring Systems
,”
Cardiovasc. Eng. Technol.
,
13
(
2
), pp.
279
290
.10.1007/s13239-021-00575-2
26.
Cappon
,
F.
,
Wu
,
T.
,
Papaioannou
,
T.
,
Du
,
X.
,
Hsu
,
P. L.
, and
Khir
,
A. W.
,
2021
, “
Mock Circulatory Loops Used for Testing Cardiac Assist Devices: A Review of Computational and Experimental Models
,”
Int. J. Artif. Organs
,
44
(
11
), pp.
793
806
.10.1177/03913988211045405
27.
Timms
,
D. L.
,
Gregory
,
S. D.
,
Greatrex
,
N. A.
,
Pearcy
,
M. J.
,
Fraser
,
J. F.
, and
Steinseifer
,
U.
,
2011
, “
A Compact Mock Circulation Loop for the In Vitro Testing of Cardiovascular Devices
,”
Artif. Organs
,
35
(
4
), pp.
384
391
.10.1111/j.1525-1594.2010.01088.x
28.
May-Newman
,
K.
,
Marquez-Maya
,
N.
,
Montes
,
R.
, and
Salim
,
S.
,
2019
, “
The Effect of Inflow Cannula Angle on the Intraventricular Flow Field of the Left Ventricular Assist Device-Assisted Heart: An In Vitro Flow Visualization Study
,”
ASAIO J.
,
65
(
2
), pp.
139
147
.10.1097/MAT.0000000000000790
29.
Myers
,
T. G.
,
Ribas Ripoll
,
V.
,
Sáez de Tejada Cuenca
,
A.
,
Mitchell
,
S. L.
, and
McGuinness
,
M. J.
,
2017
, “
Modelling the Cardiovascular System for Assessing the Blood Pressure Curve
,”
Math. Ind. Case Stud.
,
8
(
1
), p.
2
.10.1186/s40929-017-0011-1
30.
Fetanat
,
M.
,
Stevens
,
M.
,
Hayward
,
C.
, and
Lovell
,
N. H.
,
2021
, “
A Sensorless Control System for an Implantable Heart Pump Using a Real-Time Deep Convolutional Neural Network
,”
IEEE Trans. Biomed. Eng.
,
68
(
10
), pp.
3029
3038
.10.1109/TBME.2021.3061405
31.
Meki
,
M.
,
Wang
,
Y.
,
Sethu
,
P.
,
Ghazal
,
M.
,
El-Baz
,
A.
, and
Giridharan
,
G.
,
2020
, “
A Sensorless Rotational Speed-Based Control System for Continuous Flow Left Ventricular Assist Devices
,”
IEEE Trans. Biomed. Eng.
,
67
(
4
), pp.
1050
1060
.10.1109/TBME.2019.2928826
32.
Kung
,
E.
,
Farahmand
,
M.
, and
Gupta
,
A.
,
2019
, “
A Hybrid Experimental-Computational Modeling Framework for Cardiovascular Device Testing
,”
ASME J. Biomech. Eng.
,
141
(
5
), p.
051012
.10.1115/1.4042665
33.
Nestler
,
F.
,
Bradley
,
A. P.
,
Wilson
,
S. J.
,
Timms
,
D. L.
,
Frazier
,
O. H.
, and
Cohn
,
W. E.
,
2014
, “
A Hybrid Mock Circulation Loop for a Total Artificial Heart
,”
Artif. Organs
,
38
(
9
), pp.
775
782
.10.1111/aor.12380
34.
Rapp
,
E.
,
Pawar
,
S. R.
, and
Longoria
,
R. G.
,
2022
, “
Hybrid Mock Circulatory Loop Simulation of Extreme Cardiac Events
,”
IEEE Trans. Biomed. Eng.
,
69
(
9
), pp.
2883
2892
.10.1109/TBME.2022.3156963
35.
Ferrari
,
G.
,
De Lazzari
,
C.
,
Mimmo
,
R.
,
Ambrosi
,
D.
, and
Tosti
,
G.
,
1994
, “
Mock Circulatory System for In Vitro Reproduction of the Left Ventricle, the Arterial Tree and Their Interaction With a Left Ventricular Assist Device
,”
J. Med. Eng. Technol.
,
18
(
3
), pp.
87
95
.10.3109/03091909409030237
36.
Singh
,
D.
, and
Singhal
,
A.
,
2007
, “
Design and Fabrication of a Mock Circulatory System for Reliability Tests on Aortic Heart Valves
,”
ASME
Paper No. SBC2007-176638.10.1115/SBC2007-176638
37.
Mueller
,
I.
,
Jansen-Park
,
S.-H.
,
Neidlin
,
M.
,
Steinseifer
,
U.
,
Abel
,
D.
,
Autschbach
,
R.
,
Rossaint
,
R.
,
Schmitz-Rode
,
T.
, and
Sonntag
,
S. J.
,
2017
, “
Design of a Right Ventricular Mock Circulation Loop as a Test Bench for Right Ventricular Assist Devices
,”
Biomed. Eng.
,
62
(
2
), pp.
131
137
.10.1515/bmt-2016-0104
38.
Farahmand
,
M.
,
Bodwell
,
E.
,
D'Souza
,
G. A.
,
Herbertson
,
L. H.
, and
Scully
,
C. G.
,
2023
, “
Mock Circulatory Loop Generated Database for Dynamic Characterization of Pressure-Based Cardiac Output Monitoring Systems
,”
Comput. Biol. Med.
,
160
, p.
106979
.10.1016/j.compbiomed.2023.106979
39.
Vukicevic
,
M.
,
Chiulli
,
J. A.
,
Conover
,
T.
,
Pennati
,
G.
,
Hsia
,
T. Y.
, and
Figliola
,
R. S.
,
2013
, “
Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior
,”
ASAIO J.
,
59
(
3
), pp.
253
260
.10.1097/MAT.0b013e318288a2ab
40.
Westerhof
,
N.
,
Elzinga
,
G.
, and
Sipkema
,
P.
,
1971
, “
An Artificial Arterial System for Pumping Hearts
,”
J. Appl. Physiol.
,
31
(
5
), pp.
776
781
.10.1152/jappl.1971.31.5.776
41.
Arabia
,
M.
, and
Akutsu
,
T.
,
1984
, “
A New Test Circulatory System for Research in Cardiovascular Engineering
,”
Ann. Biomed. Eng.
,
12
(
1
), pp.
29
48
.10.1007/BF02410289
42.
Ferrari
,
G.
,
Khir
,
A. W.
,
Fresiello
,
L.
,
Di Molfetta
,
A.
, and
Kozarski
,
M.
,
2011
, “
Hybrid Model Analysis of Intra-Aortic Balloon Pump Performance as a Function of Ventricular and Circulatory Parameters
,”
Artif. Organs
,
35
(
9
), pp.
902
911
.10.1111/j.1525-1594.2011.01244.x
43.
Pantalos
,
G. M.
,
Ionan
,
C.
,
Koenig
,
S. C.
,
Gillars
,
K. J.
,
Horrell
,
T.
,
Sahetya
,
S.
,
Colyer
,
J.
, and
Gray
, and
L. A.
, Jr.
,
2010
, “
Expanded Pediatric Cardiovascular Simulator for Research and Training
,”
ASAIO J.
,
56
(
1
), pp.
67
72
.10.1097/MAT.0b013e3181c838ae
44.
Schima
,
H.
,
Baumgartner
,
H.
,
Spitaler
,
F.
,
Kūhn
,
P.
, and
Wolner
,
E.
,
1992
, “
A Modular Mock Circulation for Hydromechanical Studies on Valves, Stenoses, Vascular Grafts and Cardiac Assist Devices
,”
Int. J. Artif. Organs
,
15
(
7
), pp.
417
421
.10.1177/039139889201500708
45.
Kolyva
,
C.
,
Biglino
,
G.
,
Pepper
,
J. R.
, and
Khir
,
A. W.
,
2012
, “
A Mock Circulatory System With Physiological Distribution of Terminal Resistance and Compliance: Application for Testing the Intra-Aortic Balloon Pump
,”
Artif. Organs
,
36
(
3
), pp.
E62
E70
.10.1111/j.1525-1594.2010.01071.x
46.
D'Souza
,
G. A.
,
Peelukhana
,
S. V.
, and
Banerjee
,
R. K.
,
2014
, “
Diagnostic Uncertainties During Assessment of Serial Coronary Stenoses: An In Vitro Study
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021026
.10.1115/1.4026317
47.
Biglino
,
G.
,
Cosentino
,
D.
,
Steeden
,
J. A.
,
De Nova
,
L.
,
Castelli
,
M.
,
Ntsinjana
,
H.
,
Pennati
,
G.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2015
, “
Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study
,”
Front. Pediatr.
,
3
(107).10.3389/fped.2015.00107
48.
Koenig
,
S. C.
,
Pantalos
,
G. M.
,
Gillars
,
K. J.
,
Ewert
,
D. L.
,
Litwak
,
K. N.
, and
Etoch
,
S. W.
,
2004
, “
Hemodynamic and Pressure-Volume Responses to Continuous and Pulsatile Ventricular Assist in an Adult Mock Circulation
,”
ASAIO J.
,
50
(
1
), pp.
15
24
.10.1097/01.MAT.0000104816.50277.EB
49.
Schampaert
,
S.
,
Pennings
,
K. A.
,
van de Molengraft
,
M. J.
,
Pijls
,
N. H.
,
van de Vosse
,
F. N.
, and
Rutten
,
M. C.
,
2014
, “
A Mock Circulation Model for Cardiovascular Device Evaluation
,”
Physiol. Meas.
,
35
(
4
), pp.
687
702
.10.1088/0967-3334/35/4/687
50.
Vaes
,
M.
,
Rutten
,
M.
,
van de Molengraft
,
R.
, and
van de Vosse
,
F.
,
2007
, “
Left Ventricular Assist Device Evaluation With a Model-Controlled Mock Circulation
,”
ASME
Paper No. SBC2007-176372.10.1115/SBC2007-176372
51.
Xu
,
K.-W.
,
Gao
,
Q.
,
Wan
,
M.
, and
Zhang
,
K.
,
2023
, “
Mock Circulatory Loop Applications for Testing Cardiovascular Assist Devices and In Vitro Studies
,”
Front. Physiol.
,
14
(1175919).10.3389/fphys.2023.1175919
52.
Diepen
,
S. V.
,
Katz
,
J. N.
,
Albert
,
N. M.
,
Henry
,
T. D.
,
Jacobs
,
A. K.
,
Kapur
,
N. K.
,
Kilic
,
A.
,
Menon
,
V.
,
Ohman
,
E. M.
,
Sweitzer
,
N. K.
,
Thiele
,
H.
,
Washam
,
J. B.
, and
Cohen
,
M. G.
,
2017
, “
Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association
,”
Circulation
,
136
(
16
), pp.
e232
e268
.10.1161/CIR.0000000000000525
53.
Kolte
,
D.
,
Khera
,
S.
,
Aronow
,
W. S.
,
Mujib
,
M.
,
Palaniswamy
,
C.
,
Sule
,
S.
,
Jain
,
D.
,
Gotsis
,
W.
,
Ahmed
,
A.
,
Frishman
,
W. H.
, and
Fonarow
,
G. C.
,
2014
, “
Trends in Incidence, Management, and Outcomes of Cardiogenic Shock Complicating ST-Elevation Myocardial Infarction in the United States
,”
J. Am. Heart Assoc.
,
3
(
1
), p.
e000590
.10.1161/JAHA.113.000590
54.
Thiele
,
H.
,
Ohman
,
E. M.
,
de Waha-Thiele
,
S.
,
Zeymer
,
U.
, and
Desch
,
S.
,
2019
, “
Management of Cardiogenic Shock Complicating Myocardial Infarction: An Update 2019
,”
Eur. Heart J.
,
40
(
32
), pp.
2671
2683
.10.1093/eurheartj/ehz363
55.
Vahdatpour
,
C.
,
Collins
,
D.
, and
Goldberg
,
S.
,
2019
, “
Cardiogenic Shock
,”
J. Am. Heart Assoc.
,
8
(
8
), p.
e011991
.10.1161/JAHA.119.011991
56.
Kahan
,
T.
, and
Bergfeldt
,
L.
,
2005
, “
Left Ventricular Hypertrophy in Hypertension: Its Arrhythmogenic Potential
,”
Heart
,
91
(
2
), pp.
250
256
.10.1136/hrt.2004.042473
57.
Virtanen
,
M. P. O.
,
Nieminen
,
T.
,
Kähönen
,
M. A. P.
,
Majahalme
,
S. K.
,
Tuomisto
,
M. T.
,
Turjanmaa
,
V. M. H.
, and
Kööbi
,
T.
,
2008
, “
The Influence of Hemodynamic Factors on Left Ventricular Mass
,”
J. Hum. Hypertens.
,
22
(
2
), pp.
126
128
.10.1038/sj.jhh.1002267
58.
Center for Disease Control and Prevention, National Center for Health Statistics
,
2019
, About Multiple Cause of Death, 1999–2019,
Centers for Disease Control and Prevention
,
Atlanta, GA
.
59.
Fryar
,
C. D.
,
Chen
,
T. C.
, and
Li
,
X.
,
2012
,
Prevalence of Uncontrolled Risk Factors for Cardiovascular Disease: United States, 19992010
, Vol. 103, NCHS Data Brief, Hyattsville, MD.
60.
Virani
,
S. S.
,
Alonso
,
A.
,
Aparicio
,
H. J.
,
Benjamin
,
E. J.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
,
A. M.
,
Cheng
,
S.
,
Delling
,
F. N.
,
Elkind
,
M. S. V.
,
Evenson
,
K. R.
,
Ferguson
,
J. F.
,
Gupta
,
D. K.
,
Khan
,
S. S.
,
Kissela
,
B. M.
,
Knutson
,
K. L.
,
Lee
,
C. D.
,
Lewis
,
T. T.
,
Liu
,
J.
,
Loop
,
M. S.
,
Lutsey
,
P. L.
,
Ma
,
J.
,
Mackey
,
J.
,
Martin
,
S. S.
,
Matchar
,
D. B.
,
Mussolino
,
M. E.
,
Navaneethan
,
S. D.
,
Perak
,
A. M.
,
Roth
,
G. A.
,
Samad
,
Z.
,
Satou
,
G. M.
,
Schroeder
,
E. B.
,
Shah
,
S. H.
,
Shay
,
C. M.
,
Stokes
,
A.
,
VanWagner
,
L. B.
,
Wang
,
N. Y.
, and
Tsao
,
C. W.
,
American Heart Association Council on Epidemiology and Prevention Statistics Committee
, and
Stroke Statistics subcommittee
,
2021
, “
Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association
,”
Circulation
,
143
(
8
), pp.
e254
e743
.10.1161/CIR.0000000000000950
61.
Brown
,
J. C.
,
Gerhardt
,
T. E.
, and
Kwon
,
E.
,
2022
,
Risk Factors for Coronary Artery Disease
,
StatPearls Publishing LLC
,
Treasure Island, FL
.
62.
Nichols
,
W. W.
,
Conti
,
C. R.
,
Walker
,
W. E.
, and
Milnor
,
W. R.
,
1977
, “
Input Impedance of the Systemic Circulation in Man
,”
Circ. Res.
,
40
(
5
), pp.
451
458
.10.1161/01.RES.40.5.451
63.
Rowe
,
G. G.
,
Thomsen
,
J. H.
,
Stenlund
,
R. R.
,
Mckenna
,
D. H.
,
Sialer
,
S.
, and
Corliss
,
R. J.
,
1969
, “
A Study of Hemodynamics and Coronary Blood Flow in Man With Coronary Artery Disease
,”
Circulation
,
39
(
1
), pp.
139
148
.10.1161/01.CIR.39.1.139
64.
Hirschfeld
,
S.
,
Liebman
,
J.
,
Borkat
,
G.
, and
Bormuth
,
C.
,
1977
, “
Intracardiac Pressure-Sound Correlates of Echographic Aortic Valve Closure
,”
Circulation
,
55
(
4
), pp.
602
604
.10.1161/01.CIR.55.4.602
65.
Latham
,
R. D.
,
Westerhof
,
N.
,
Sipkema
,
P.
,
Rubal
,
B. J.
,
Reuderink
,
P.
, and
Murgo
,
J. P.
,
1985
, “
Regional Wave Travel and Reflections Along the Human Aorta: A Study With Six Simultaneous Micromanometric Pressures
,”
Circulation
,
72
(
6
), pp.
1257
1269
.10.1161/01.CIR.72.6.1257
66.
Politi
,
M. T.
,
Ghigo
,
A.
,
Fernández
,
J. M.
,
Khelifa
,
I.
,
Gaudric
,
J.
,
Fullana
,
J. M.
, and
Lagrée
,
P.-Y.
,
2016
, “
The Dicrotic Notch Analyzed by a Numerical Model
,”
Comput. Biol. Med.
,
72
, pp.
54
64
.10.1016/j.compbiomed.2016.03.005
67.
Russell
,
W. M. S.
, and
Burch
,
R. L.
,
1959
,
The Principles of Humane Experimental Technique
,
Methuen & Co
,
London, UK
.
68.
U.S. Food and Drug Administration
,
2021
, “
Alternative Methods Working Group Report: Advancing New Alternative Methodologies at FDA
,”
U.S. Food and Drug Administration
,
Silver Spring, MD
, accessed Oct. 26, 2023, https://www.fda.gov/media/144891/download
69.
U.S. Food and Drug Administration
,
2010
, “
General Considerations for Animal Studies for Cardiovascular Devices
,”
U.S. Food and Drug Administration
,
Silver Spring, MD
, accessed Oct. 26, 2023, https://www.fda.gov/media/79366/download
70.
Undar
,
A.
,
Zapanta
,
C. M.
,
Reibson
,
J. D.
,
Souba
,
M.
,
Lukic
,
B.
,
Weiss
,
W. J.
,
Snyder
,
A. J.
,
Kunselman
,
A. R.
,
Pierce
,
W. S.
,
Rosenberg
,
G.
, and
Myers
,
J. L.
,
2005
, “
Precise Quantification of Pressure Flow Waveforms of a Pulsatile Ventricular Assist Device
,”
ASAIO J.
,
51
(
1
), pp.
56
59
.10.1097/01.MAT.0000150326.51377.A0
71.
Dasi
,
L. P.
,
Simon
,
H. A.
,
Sucosky
,
P.
, and
Yoganathan
,
A. P.
,
2009
, “
Fluid Mechanics of Artificial Heart Valves
,”
Clin. Exp. Pharmacol. Physiol.
,
36
(
2
), pp.
225
237
.10.1111/j.1440-1681.2008.05099.x
72.
Paulsen
,
P. K.
,
Jensen
,
B. K.
,
Hasenkam
,
J. M.
, and
Nygaard
,
H.
,
1999
, “
High-Frequency Pressure Fluctuations Measured in Heart Valve Patients
,”
J. Heart Valve Dis.
,
8
(
5
), pp.
482
486
.https://pubmed.ncbi.nlm.nih.gov/10517387/
73.
Voskoboinick
,
V.
,
Voskoboinyk
,
O.
,
Chertov
,
O.
,
Voskoboinick
,
A.
, and
Tereshchenko
,
L.
,
2020
, “
Hydrodynamic Noise of Pulsating Jets Through Bileaflet Mechanical Mitral Valve
,”
Biomed. Res. Int.
,
2020
, p.
1024096
.10.1155/2020/1024096
74.
Brookshier
,
K. A.
, and
Tarbell
,
J. M.
,
1993
, “
Evaluation of a Transparent Blood Analog Fluid: Aqueous Xanthan Gum/Glycerin
,”
Biorheology
,
30
(
2
), pp.
107
116
.10.3233/BIR-1993-30202
You do not currently have access to this content.