Abstract

Type B aortic dissection is a life-threatening medical emergency that can result in rupture of the aorta. Due to the complexity of patient-specific characteristics, only limited information on flow patterns in dissected aortas has been reported in the literature. Leveraging the medical imaging data for patient-specific in vitro modeling can complement the hemodynamic understanding of aortic dissections. We propose a new approach toward fully automated patient-specific type B aortic dissection model fabrication. Our framework uses a novel deep-learning-based segmentation for negative mold manufacturing. Deep-learning architectures were trained on a dataset of 15 unique computed tomography scans of dissection subjects and were blind-tested on 4 sets of scans, which were targeted for fabrication. Following segmentation, the three-dimensional models were created and printed using polyvinyl alcohol. These models were then coated with latex to create compliant patient-specific phantom models. The magnetic resonance imaging (MRI) structural images demonstrate the ability of the introduced manufacturing technique for creating intimal septum walls and tears based on patient-specific anatomy. The in vitro experiments show the fabricated phantoms generate physiologically-accurate pressure results. The deep-learning models also show high similarity metrics between manual segmentation and autosegmentation where Dice metric is as high as 0.86. The proposed deep-learning-based negative mold manufacturing method facilitates an inexpensive, reproducible, and physiologically-accurate patient-specific phantom model fabrication suitable for aortic dissection flow modeling.

References

1.
Collins
,
J. S.
,
Evangelista
,
A.
,
Nienaber
,
C. A.
,
Bossone
,
E.
,
Fang
,
J.
,
Cooper
,
J. V.
,
Smith
,
D. E.
, et al.,
2004
, “
Differences in Clinical Presentation, Management, and Outcomes of Acute Type a Aortic Dissection in Patients With and Without Previous Cardiac Surgery
,”
Circulation
,
110
(
11_suppl_1
), pp.
II-237
II-242
.10.1161/01.CIR.0000138219.67028.2a
2.
Januzzi
,
J. L.
,
Isselbacher
,
E. M.
,
Fattori
,
R.
,
Cooper
,
J. V.
,
Smith
,
D. E.
,
Fang
,
J.
,
Eagle
,
K. A.
,
Mehta
,
R. H.
,
Nienaber
,
C. A.
, and
Pape
,
L. A.
,
2004
, “
Characterizing the Young Patient With Aortic Dissection: Results From the International Registry of Aortic Dissection (IRAD)
,”
J. Am. Coll. Cardiol.
,
43
(
4
), pp.
665
669
.10.1016/j.jacc.2003.08.054
3.
Prêtre
,
R.
, and
Von Segesser
,
L. K.
,
1997
, “
Aortic Dissection
,”
Lancet
,
349
(
9063
), pp.
1461
1464
.10.1016/S0140-6736(96)09372-5
4.
Baliga
,
R.
,
Nienaber
,
C. A.
,
Isselbacher
,
E. M.
, and
Eagle
,
K. A.
,
2007
,
Aortic Dissection and Related Syndromes
,
Springer Science & Business Media
, Berlin.
5.
Girish
,
A.
,
Padala
,
M.
,
Kalra
,
K.
,
McIver
,
B. V.
,
Veeraswamy
,
R. K.
,
Chen
,
E. P.
, and
Leshnower
,
B. G.
,
2016
, “
The Impact of Intimal Tear Location and Partial False Lumen Thrombosis in Acute Type B Aortic Dissection
,”
Ann. Thorac. Surg.
,
102
(
6
), pp.
1925
1932
.10.1016/j.athoracsur.2016.05.020
6.
Magee
,
G. A.
,
Veranyan
,
N.
,
Kuo
,
E. C.
,
Ham
,
S. W.
,
Ziegler
,
K. R.
,
Weaver
,
F. A.
,
Fleischman
,
F.
,
Bowdish
,
M. E.
, and
Han
,
S. M.
,
2019
, “
Anatomic Suitability for “Off-the-Shelf” Thoracic Single Side-Branched Endograft in Patients With Type B Aortic Dissection
,”
J. Vasc. Surg.
,
70
(
6
), pp.
1776
1781
.10.1016/j.jvs.2019.04.461
7.
Thrumurthy
,
S.
,
Karthikesalingam
,
A.
,
Patterson
,
B.
,
Holt
,
P.
,
Hinchliffe
,
R.
,
Loftus
,
I.
, and
Thompson
,
M.
,
2011
, “
A Systematic Review of Mid-Term Outcomes of Thoracic Endovascular Repair (TEVAR) of Chronic Type B Aortic Dissection
,”
Eur. J. Vasc. Endovasc. Surg.
,
42
(
5
), pp.
632
647
.10.1016/j.ejvs.2011.08.009
8.
Mathlouthi
,
A.
,
Nejim
,
B.
,
Magee
,
G. A.
,
Siracuse
,
J. J.
, and
Malas
,
M. B.
,
2021
, “
Hospitalization Cost and in-Hospital Outcomes Following Type B Thoracic Aortic Dissection Repair
,”
Ann. Vasc. Surg.
,
75
, pp.
22
28
.10.1016/j.avsg.2021.01.111
9.
Aghilinejad
,
A.
,
Wei
,
H.
,
Magee
,
G. A.
, and
Pahlevan
,
N. M.
,
2022
, “
Model-Based Fluid-Structure Interaction Approach for Evaluation of Thoracic Endovascular Aortic Repair Endograft Length in Type B Aortic Dissection
,”
Front. Bioeng. Biotechnol.
,
10
, pp.
1
14
.10.3389/fbioe.2022.825015
10.
Aghilinejad
,
A.
,
Wei
,
H.
,
Magee
,
G.
, and
Pahlevan
,
N.
,
2021
, “
Hemodynamically-Efficient Graft Design for Endovascular Repair in Type B Aortic Dissection
,”
Proc. APS Division of Fluid Dynamics Meeting Abstracts
, Phoenix, AZ, Nov. 21–23, p.
T14.010
.https://ui.adsabs.harvard.edu/abs/2021APS..DFDT14010A/abstract
11.
Fleischmann
,
D.
,
Afifi
,
R. O.
,
Casanegra
,
A. I.
,
Elefteriades
,
J. A.
,
Gleason
,
T. G.
,
Hanneman
,
K.
,
Roselli
,
E. E.
, et al.,
2022
, “
Imaging and Surveillance of Chronic Aortic Dissection: A Scientific Statement From the American Heart Association
,”
Circulation: Cardiovasc. Imag.
,
15
(
3
), p.
e000075
.10.1161/HCI.0000000000000075
12.
Isselbacher
,
E. M.
,
Preventza
,
O.
,
Hamilton Black Iii
,
J.
,
Augoustides
,
J. G.
,
Beck
,
A. W.
,
Bolen
,
M. A.
,
Braverman
,
A. C.
, et al.,
2022
, “
2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines
,”
J. Am. Coll. Cardiol.
,
80
(
24
), pp.
e223
e393
.10.1016/j.jacc.2022.08.004
13.
Alastruey
,
J.
,
Khir
,
A. W.
,
Matthys
,
K. S.
,
Segers
,
P.
,
Sherwin
,
S. J.
,
Verdonck
,
P. R.
,
Parker
,
K. H.
, and
Peiró
,
J.
,
2011
, “
Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Visco-Elastic Simulations Against In Vitro Measurements
,”
J. Biomech.
,
44
(
12
), pp.
2250
2258
.10.1016/j.jbiomech.2011.05.041
14.
Alastruey
,
J.
,
Parker
,
K.
,
Peiró
,
J.
,
Byrd
,
S.
, and
Sherwin
,
S.
,
2007
, “
Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows
,”
J. Biomech.
,
40
(
8
), pp.
1794
1805
.10.1016/j.jbiomech.2006.07.008
15.
Aghilinejad
,
A.
,
Amlani
,
F.
,
King
,
K. S.
, and
Pahlevan
,
N. M.
,
2020
, “
Dynamic Effects of Aortic Arch Stiffening on Pulsatile Energy Transmission to Cerebral Vasculature as a Determinant of Brain-Heart Coupling
,”
Sci. Rep.
,
10
(
1
), pp.
1
12
.10.1038/s41598-020-65616-7
16.
Zimmermann
,
J.
,
Loecher
,
M.
,
Kolawole
,
F. O.
,
Bäumler
,
K.
,
Gifford
,
K.
,
Dual
,
S. A.
,
Levenston
,
M.
,
Marsden
,
A. L.
, and
Ennis
,
D. B.
,
2021
, “
On the Impact of Vessel Wall Stiffness on Quantitative Flow Dynamics in a Synthetic Model of the Thoracic Aorta
,”
Sci. Rep.
,
11
(
1
), pp.
1
14
.10.1038/s41598-021-86174-6
17.
Zimmermann
,
J.
,
Bäumler
,
K.
,
Loecher
,
M.
,
Cork
,
T. E.
,
Kolawole
,
F. O.
,
Gifford
,
K.
,
Marsden
,
A. L.
,
Fleischmann
,
D.
, and
Ennis
,
D. B.
,
2021
, “
Quantitative Hemodynamics in Aortic Dissection: Comparing In Vitro MRI With FSI Simulation in a Compliant Model
,”
Proc. Functional Imaging and Modeling of the Heart: 11th International Conference, FIMH 2021
, Stanford, CA, June 21–25, pp.
575
586
.10.1007/978-3-030-78710-3_55
18.
Yazdi
,
S. G.
,
Geoghegan
,
P.
,
Docherty
,
P.
,
Jermy
,
M.
, and
Khanafer
,
A.
,
2018
, “
A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques
,”
Ann. Biomed. Eng.
,
46
(
11
), pp.
1697
1721
.10.1007/s10439-018-2085-8
19.
Cappon
,
F.
,
Wu
,
T.
,
Papaioannou
,
T.
,
Du
,
X.
,
Hsu
,
P.-L.
, and
Khir
,
A. W.
,
2021
, “
Mock Circulatory Loops Used for Testing Cardiac Assist Devices: A Review of Computational and Experimental Models
,”
Int. J. Artif. Organs
,
44
(
11
), pp.
793
806
.10.1177/03913988211045405
20.
Knoops
,
P. G.
,
Biglino
,
G.
,
Hughes
,
A. D.
,
Parker
,
K. H.
,
Xu
,
L.
,
Schievano
,
S.
, and
Torii
,
R.
,
2017
, “
A Mock Circulatory System Incorporating a Compliant 3D‐Printed Anatomical Model to Investigate Pulmonary Hemodynamics
,”
Artif. Organs
,
41
(
7
), pp.
637
646
.10.1111/aor.12809
21.
Pahlevan
,
N. M.
, and
Gharib
,
M.
,
2014
, “
A Bio-Inspired Approach for the Reduction of Left Ventricular Workload
,”
PloS One
,
9
(
1
), p.
e87122
.10.1371/journal.pone.0087122
22.
Segers
,
P.
,
Dubois
,
F.
,
De Wachter
,
D.
, and
Verdonck
,
P.
,
1998
, “
Role and Relevancy of a Cardiovascular Simulator
,”
Cardiovasc. Eng.
,
3
, pp.
48
56
.https://www.researchgate.net/publication/234653727_Role_and_Relevancy_of_a_Cardiovascular_Simulator
23.
Peelukhana
,
S. V.
,
Wang
,
Y.
,
Berwick
,
Z.
,
Kratzberg
,
J.
,
Krieger
,
J.
,
Roeder
,
B.
,
Cloughs
,
R. E.
,
Hsiao
,
A.
,
Chambers
,
S.
, and
Kassab
,
G. S.
,
2017
, “
Role of Pulse Pressure and Geometry of Primary Entry Tear in Acute Type B Dissection Propagation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
592
603
.10.1007/s10439-016-1705-4
24.
Birjiniuk
,
J.
,
Timmins
,
L. H.
,
Young
,
M.
,
Leshnower
,
B. G.
,
Oshinski
,
J. N.
,
Ku
,
D. N.
, and
Veeraswamy
,
R. K.
,
2017
, “
Pulsatile Flow Leads to Intimal Flap Motion and Flow Reversal in an In Vitro Model of Type B Aortic Dissection
,”
Cardiovasc. Eng. Technol.
,
8
(
3
), pp.
378
389
.10.1007/s13239-017-0312-3
25.
Tsai
,
T. T.
,
Schlicht
,
M. S.
,
Khanafer
,
K.
,
Bull
,
J. L.
,
Valassis
,
D. T.
,
Williams
,
D. M.
,
Berguer
,
R.
, and
Eagle
,
K. A.
,
2008
, “
Tear Size and Location Impacts False Lumen Pressure in an Ex Vivo Model of Chronic Type B Aortic Dissection
,”
J. Vasc. Surg.
,
47
(
4
), pp.
844
851
.10.1016/j.jvs.2007.11.059
26.
Annio
,
G.
,
Franzetti
,
G.
,
Bonfanti
,
M.
,
Gallarello
,
A.
,
Palombi
,
A.
,
De Momi
,
E.
,
Homer-Vanniasinkam
,
S.
, et al.,
2020
, “
Low-Cost Fabrication of Polyvinyl Alcohol-Based Personalized Vascular Phantoms for In Vitro Hemodynamic Studies: Three Applications
,”
ASME J. Eng. Sci. Med. Diag. Ther.
,
3
(
3
), p. 034501.10.1115/1.4045760
27.
Pepe
,
A.
,
Li
,
J.
,
Rolf-Pissarczyk
,
M.
,
Gsaxner
,
C.
,
Chen
,
X.
,
Holzapfel
,
G. A.
, and
Egger
,
J.
,
2020
, “
Detection, Segmentation, Simulation and Visualization of Aortic Dissections: A Review
,”
Med. Image Anal.
,
65
, p.
101773
.10.1016/j.media.2020.101773
28.
Hahn
,
L. D.
,
Mistelbauer
,
G.
,
Higashigaito
,
K.
,
Koci
,
M.
,
Willemink
,
M. J.
,
Sailer
,
A. M.
,
Fischbein
,
M.
, and
Fleischmann
,
D.
,
2020
, “
CT-Based True-and False-Lumen Segmentation in Type B Aortic Dissection Using Machine Learning
,”
Radiol. Cardiothoracic Imag.
,
2
(
3
), p.
e190179
.10.1148/ryct.2020190179
29.
Chen
,
D.
,
Zhang
,
X.
,
Mei
,
Y.
,
Liao
,
F.
,
Xu
,
H.
,
Li
,
Z.
,
Xiao
,
Q.
,
Guo
,
W.
,
Zhang
,
H.
,
Yan
,
T.
,
Xiong
,
J.
, and
Ventikos
,
Y.
,
2021
, “
Multi-Stage Learning for Segmentation of Aortic Dissections Using a Prior Aortic Anatomy Simplification
,”
Med. Image Anal.
,
69
, p.
101931
.10.1016/j.media.2020.101931
30.
Pahlevan
,
N. M.
, and
Gharib
,
M.
,
2013
, “
In-Vitro Investigation of a Potential Wave Pumping Effect in Human Aorta
,”
J. Biomech.
,
46
(
13
), pp.
2122
2129
.10.1016/j.jbiomech.2013.07.006
31.
Bondesson
,
J.
,
Suh
,
G.-Y.
,
Marks
,
N.
,
Dake
,
M. D.
,
Lee
,
J. T.
, and
Cheng
,
C. P.
,
2021
, “
Influence of Thoracic Endovascular Aortic Repair on True Lumen Helical Morphology for Stanford Type B Dissections
,”
J. Vasc. Surg.
,
74
(
5
), pp.
1499
1507.e1491
.10.1016/j.jvs.2021.04.029
32.
Pieper
,
S.
,
Halle
,
M.
, and
Kikinis
,
R.
,
2004
, “
3D Slicer
,”
Proc. 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821)
, Arlington, TX, Apr. 18, pp.
632
635
.
33.
Alavi
,
R.
,
Aghilinejad
,
A.
,
Wei
,
H.
,
Niroumandi
,
S.
,
Wieman
,
S.
, and
Pahlevan
,
N. M.
,
2022
, “
A Coupled Atrioventricular-Aortic Setup for in-Vitro Hemodynamic Study of the Systemic Circulation: Design, Fabrication, and Physiological Relevancy
,”
PLoS One
,
17
(
11
), p.
e0267765
.10.1371/journal.pone.0267765
34.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention,
Munich, Germany, Oct. 5–9, pp.
234
241
.https://lmb.informatik.unifreiburg.de/people/ronneber/u-net/
35.
Chen
,
L.-C.
,
Papandreou
,
G.
,
Kokkinos
,
I.
,
Murphy
,
K.
, and
Yuille
,
A. L.
,
2018
, “
Deeplab: Semantic Image Segmentation With Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
40
(
4
), pp.
834
848
.10.1109/TPAMI.2017.2699184
36.
He
,
K.
,
Gkioxari
,
G.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2017
, “
Mask r-Cnn
,”
Proceedings of the IEEE International Conference on Computer Vision
, Venice, Italy, Oct. 22–29, pp.
2961
2969
.10.1109/ICCV.2017.322
37.
Yamashita
,
R.
,
Nishio
,
M.
,
Do
,
R. K. G.
, and
Togashi
,
K.
,
2018
, “
Convolutional Neural Networks: An Overview and Application in Radiology
,”
Insights Imag.
,
9
(
4
), pp.
611
629
.10.1007/s13244-018-0639-9
38.
Chen
,
C.
,
Qin
,
C.
,
Qiu
,
H.
,
Tarroni
,
G.
,
Duan
,
J.
,
Bai
,
W.
, and
Rueckert
,
D.
,
2020
, “
Deep Learning for Cardiac Image Segmentation: A Review
,”
Front. Cardiovasc. Med.
,
7
, p.
25
.10.3389/fcvm.2020.00025
39.
Shorten
,
C.
, and
Khoshgoftaar
,
T. M.
,
2019
, “
A Survey on Image Data Augmentation for Deep Learning
,”
J. Big Data
,
6
(
1
), pp.
1
48
.10.1186/s40537-019-0197-0
40.
Lesage
,
D.
,
Angelini
,
E. D.
,
Bloch
,
I.
, and
Funka-Lea
,
G.
,
2009
, “
A Review of 3D Vessel Lumen Segmentation Techniques: Models, Features and Extraction Schemes
,”
Med. Image Anal.
,
13
(
6
), pp.
819
845
.10.1016/j.media.2009.07.011
41.
Campbell-Washburn
,
A. E.
,
Ramasawmy
,
R.
,
Restivo
,
M. C.
,
Bhattacharya
,
I.
,
Basar
,
B.
,
Herzka
,
D. A.
,
Hansen
,
M. S.
, et al.,
2019
, “
Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI
,”
Radiology
,
293
(
2
), pp.
384
393
.10.1148/radiol.2019190452
42.
Aghilinejad
,
A.
,
Alavi
,
R.
,
Rogers
,
B.
,
Amlani
,
F.
, and
Pahlevan
,
N. M.
,
2021
, “
Effects of Vessel Wall Mechanics on Non-Invasive Evaluation of Cardiovascular Intrinsic Frequencies
,”
J. Biomech.
,
129
, p.
110852
.10.1016/j.jbiomech.2021.110852
43.
Kang
,
J.
,
Aghilinejad
,
A.
, and
Pahlevan
,
N. M.
,
2019
, “
On the Accuracy of Displacement-Based Wave Intensity Analysis: Effect of Vessel Wall Viscoelasticity and Nonlinearity
,”
PLoS One
,
14
(
11
), p.
e0224390
.10.1371/journal.pone.0224390
44.
Aghilinejad
,
A.
,
Amlani
,
F.
,
Liu
,
J.
, and
Pahlevan
,
N. M.
,
2021
, “
Accuracy and Applicability of Non-Invasive Evaluation of Aortic Wave Intensity Using Only Pressure Waveforms in Humans
,”
Physiol. Meas.
,
42
(
10
), p.
105003
.10.1088/1361-6579/ac2671
45.
Aghilinejad
,
A.
,
Wei
,
H.
, and
Pahlevan
,
N. M.
,
2023
, “
Non-Invasive Pressure-Only Aortic Wave Intensity Evaluation Using Hybrid Fourier Decomposition-Machine Learning Approach
,”
IEEE Trans. Biomed. Eng.
, pp.
1
10
.10.1109/TBME.2023.3236918
46.
Murgo
,
J. P.
,
Westerhof
,
N.
,
Giolma
,
J. P.
, and
Altobelli
,
S. A.
,
1980
, “
Aortic Input Impedance in Normal Man: Relationship to Pressure Wave Forms
,”
Circulation
,
62
(
1
), pp.
105
116
.10.1161/01.CIR.62.1.105
47.
Safar
,
M.
, and
O'Rourke
,
M. F.
,
2006
,
Arterial Stiffness in Hypertension: Handbook of Hypertension Series
,
Elsevier Health Sciences
, Amsterdam, The Netherlands.
48.
Guo
,
H.
, and
Yang
,
D.
,
2021
, “
PRDNet: Medical Image Segmentation Based on Parallel Residual and Dilated Network
,”
Measurement
,
173
, p.
108661
.10.1016/j.measurement.2020.108661
49.
Yang
,
R.
, and
Yu
,
Y.
,
2021
, “
Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis
,”
Front. Oncol.
,
11
, p.
638182
.10.3389/fonc.2021.638182
50.
Mackin
,
D.
,
Fave
,
X.
,
Zhang
,
L.
,
Fried
,
D.
,
Yang
,
J.
,
Taylor
,
B.
,
Rodriguez-Rivera
,
E.
,
Dodge
,
C.
,
Jones
,
A. K.
, and
Court
,
L.
,
2015
, “
Measuring CT Scanner Variability of Radiomics Features
,”
Investig. Radiol.
,
50
(
11
), pp.
757
765
.10.1097/RLI.0000000000000180
You do not currently have access to this content.