Abstract

As an effective method to deliver external materials into biological cells, microinjection has been widely applied in the biomedical field. However, the knowledge of cell mechanical property is still inadequate, which greatly limits the efficiency and success rate of injection. Thus, a new rate-dependent mechanical model based on membrane theory is proposed for the first time. In this model, an analytical equilibrium equation between the injection force and cell deformation is established by considering the speed effect of microinjection. Different from the traditional membrane-theory-based model, the elastic coefficient of the constitutive material in the proposed model is modified as a function of the injection velocity and acceleration, effectively simulating the influence of speeds on the mechanical responses and providing a more generalized and practical model. Using this model, other mechanical responses at different speeds can be also accurately predicted, including the distribution of membrane tension and stress and the deformed shape. To verify the validity of the model, numerical simulations and experiments were carried out. The results show that the proposed model can match the real mechanical responses well at different injection speeds up to 2 mm/s. The model presented in this paper will be promising in the application of automatic batch cell microinjection with high efficiency.

References

1.
Zhang
,
Z.
,
Dai
,
C.
,
Huang
,
J.
,
Wang
,
X.
,
Liu
,
J.
,
Ru
,
C.
,
Pu
,
H.
,
Xie
,
S.
,
Zhang
,
J.
,
Moskovtsev
,
S.
,
Librach
,
C.
,
Jarvi
,
K.
, and
Sun
,
Y.
,
2019
, “
Robotic Immobilization of Motile Sperm for Clinical Intracytoplasmic Sperm Injection
,”
IEEE Trans. Biomed. Eng.
,
66
(
2
), pp.
444
452
.10.1109/TBME.2018.2848972
2.
Zhao
,
Y.
,
Sun
,
H.
,
Sha
,
X.
,
Gu
,
L.
,
Zhan
,
Z.
, and
Li
,
W. J.
,
2018
, “
A Review of Automated Microinjection of Zebrafish Embryos
,”
Micromachines
,
10
(
1
), p.
7
.10.3390/mi10010007
3.
Permana
,
S.
,
Grant
,
E.
,
Walker
,
G. M.
, and
Yoder
,
J. A.
,
2016
, “
A Review of Automated Microinjection Systems for Single Cells in the Embryogenesis Stage
,”
IEEE/ASME Trans. Mechatronics
,
21
(
5
), pp.
2391
2404
.10.1109/TMECH.2016.2574871
4.
Xie
,
Y.
,
Sun
,
D.
,
Tse
,
H. Y. G.
,
Liu
,
C.
, and
Cheng
,
S. H.
,
2011
, “
Force Sensing and Manipulation Strategy in Robot-Assisted Microinjection on Zebrafish Embryos
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1002
1010
.10.1109/TMECH.2010.2068055
5.
Dai
,
C.
,
Zhang
,
Z.
,
Lu
,
Y.
,
Shan
,
G.
,
Wang
,
X.
,
Zhao
,
Q.
,
Ru
,
C.
, and
Sun
,
Y.
,
2020
, “
Robotic Manipulation of Deformable Cells for Orientation Control
,”
IEEE Trans. Robot.
,
36
(
1
), pp.
271
283
.10.1109/TRO.2019.2946746
6.
Shang
,
W.
,
Lu
,
H.
,
Yang
,
Y.
, and
Shen
,
Y.
,
2022
, “
7-DoFs Rotation-Thrust Microrobotic Control for Low-Invasive Cell Pierce Via Impedance Compensation
,”
IEEE/ASME Trans. Mechatronics
,
27
(
6
), pp.
5095
5106
.10.1109/TMECH.2022.3173258
7.
Sakaki
,
K.
,
Dechev
,
N.
,
Burke
,
R. D.
, and
Park
,
E. J.
,
2009
, “
Development of an Autonomous Biological Cell Manipulator With Single-Cell Electroporation and Visual Servoing Capabilities
,”
IEEE Trans. Biomed. Eng.
,
56
(
8
), pp.
2064
2074
.10.1109/TBME.2009.2021577
8.
Zhuang
,
S.
,
Lin
,
W.
,
Gao
,
H.
,
Shang
,
X.
, and
Li
,
L.
,
2017
, “
Visual Servoed Zebrafish Larva Heart Microinjection System
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
3727
3736
.10.1109/TIE.2017.2652380
9.
Fan
,
Z.
,
Fang
,
Y.
,
Sun
,
M.
, and
Zhao
,
X.
,
2020
, “
Precise Cell Injection and Extraction Control Based on Microscopic Visual Feedback
,”
IEEE/ASME Trans. Mechatronics
,
25
(
2
), pp.
872
881
.10.1109/TMECH.2019.2961813
10.
Huang
,
H. B.
,
Sun
,
D.
,
Mills
,
J. K.
, and
Cheng
,
S. H.
,
2009
, “
Robotic Cell Injection System With Position and Force Control: Toward Automatic Batch Biomanipulation
,”
IEEE Trans. Robot.
,
25
(
3
), pp.
727
737
.10.1109/TRO.2009.2017109
11.
Lu
,
Z.
,
Chen
,
P. C.
,
Nam
,
J.
,
Ge
,
R.
, and
Lin
,
W.
,
2007
, “
A Micromanipulation System With Dynamic Force-Feedback for Automatic Batch Microinjection
,”
J. Micromech. Microeng.
,
17
(
2
), pp.
314
321
.10.1088/0960-1317/17/2/018
12.
Faroque
,
S.
,
Horan
,
B.
,
Adam
,
H.
,
Pangestu
,
M.
, and
Joordens
,
M.
,
2016
, “
Haptic Technology for Micro-Robotic Cell Injection Training Systems–A Review
,”
Intell. Autom. Soft Comput.
,
22
(
3
), pp.
509
523
.10.1080/10798587.2015.1109200
13.
Ghanbari
,
A.
,
Horan
,
B.
,
Nahavandi
,
S.
,
Chen
,
X.
, and
Wang
,
W.
,
2014
, “
Haptic Microrobotic Cell Injection System
,”
IEEE Syst. J.
,
8
(
2
), pp.
371
383
.10.1109/JSYST.2012.2206440
14.
Hao
,
Y.
,
Cheng
,
S.
,
Tanaka
,
Y.
,
Hosokawa
,
Y.
,
Yalikun
,
Y.
, and
Li
,
M.
,
2020
, “
Mechanical Properties of Single Cells: Measurement Methods and Applications
,”
Biotechnol. Adv.
,
45
, p.
107648
.10.1016/j.biotechadv.2020.107648
15.
Tan
,
Y.
,
Sun
,
D.
,
Huang
,
W.
, and
Cheng
,
S. H.
,
2010
, “
Characterizing Mechanical Properties of Biological Cells by Microinjection
,”
IEEE Trans. Nanobiosci.
,
9
(
3
), pp.
171
180
.10.1109/TNB.2010.2050598
16.
Lim
,
C.
,
Zhou
,
E.
, and
Quek
,
S.
,
2006
, “
Mechanical Models for Living Cells – A Review
,”
J. Biomech.
,
39
(
2
), pp.
195
216
.10.1016/j.jbiomech.2004.12.008
17.
Wei
,
Y.
, and
Xu
,
Q.
,
2019
, “
A Survey of Force-Assisted Robotic Cell Microinjection Technologies
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
2
), pp.
931
945
.10.1109/TASE.2018.2878867
18.
Ladjal
,
H.
,
Hanus
,
J.-L.
, and
Ferreira
,
A.
,
2013
, “
Micro-to-Nano Biomechanical Modeling for Assisted Biological Cell Injection
,”
IEEE Trans. Biomed. Eng.
,
60
(
9
), pp.
2461
2471
.10.1109/TBME.2013.2258155
19.
Sun
,
Y.
,
Wan
,
K.-T.
,
Roberts
,
K. P.
,
Bischof
,
J. C.
, and
Nelson
,
B. J.
,
2003
, “
Mechanical Property Characterization of Mouse Zona Pellucida
,”
IEEE Trans. Nanobiosci.
,
2
(
4
), pp.
279
286
.10.1109/TNB.2003.820273
20.
Hajiyavand
,
A. M.
,
Saadat
,
M.
,
Abena
,
A.
,
Sadak
,
F.
, and
Sun
,
X.
,
2019
, “
Effect of Injection Speed on Oocyte Deformation in ICSI
,”
Micromachines
,
10
(
4
), p.
226
.10.3390/mi10040226
21.
Chen
,
P. C.
,
Zhou
,
S.
,
Lu
,
Z.
,
Nam
,
J.-H.
,
Luo
,
H.
,
Ge
,
R.
,
Ong
,
C.-J.
, and
Lin
,
W.
,
2015
, “
Speed Optimization in Automated Microinjection of Zebrafish Embryos
,”
Int. J. Control Autom. Syst.
,
13
(
5
), pp.
1233
1241
.10.1007/s12555-014-0139-8
22.
Tan
,
Y.
,
Sun
,
D.
,
Huang
,
W.
, and
Cheng
,
S. H.
,
2008
, “
Mechanical Modeling of Biological Cells in Microinjection
,”
IEEE Trans. Nanobiosci.
,
7
(
4
), pp.
257
266
.10.1109/TNB.2008.2011852
23.
Liu
,
F.
,
Wu
,
D.
,
Wu
,
X.
, and
Chen
,
K.
,
2015
, “
Analyses of the Cell Mechanical Damage During Microinjection
,”
Soft Matter
,
11
(
7
), pp.
1434
1442
.10.1039/C4SM02773F
24.
Mohotti
,
D.
,
Ali
,
M.
,
Ngo
,
T.
,
Lu
,
J.
, and
Mendis
,
P.
,
2014
, “
Strain Rate Dependent Constitutive Model for Predicting the Material Behaviour of Polyurea Under High Strain Rate Tensile Loading
,”
Mater. Des.
,
53
, pp.
830
837
.10.1016/j.matdes.2013.07.020
25.
Shen
,
Y.
,
Wejinya
,
U.
,
Xi
,
N.
, and
Pomeroy
,
C. A.
,
2007
, “
Force Measurement and Mechanical Characterization of Living Drosophila Embryos for Human Medical Study
,”
Proc. Inst. Mech. Eng. Part H
,
221
(
2
), pp.
99
112
.10.1243/09544119JEIM150
26.
Xie
,
Y.
,
Sun
,
D.
, and
Liu
,
C.
,
2009
, “
Penetration Force Measurement and Control in Robotic Cell Microinjection
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
4701
4706
.10.1109/IROS.2009.5354514
You do not currently have access to this content.