Abstract

Preclinical evaluation of total knee arthroplasty (TKA) components is essential to understanding their mechanical behavior and developing strategies for improving joint stability. While preclinical testing of TKA components has been useful in quantifying their effectiveness, such testing can be criticized for lacking clinical relevance, as the important contributions of surrounding soft tissues are either neglected or greatly simplified. The purpose of our study was to develop and determine if subject-specific virtual ligaments reproduce a similar behavior as native ligaments surrounding TKA joints. Six TKA knees were mounted to a motion simulator. Each was subjected to tests of anterior–posterior (AP), internal–external (IE), and varus–valgus (VV) laxity. The forces transmitted through major ligaments were measured using a sequential resection technique. By tuning the measured ligament forces and elongations to a generic nonlinear elastic ligament model, virtual ligaments were designed and used to simulate the soft tissue envelope around isolated TKA components. The average root-mean-square error (RMSE) between the laxity results of TKA joints with native versus virtual ligaments was 3.5 ± 1.8 mm during AP translation, 7.5 ± 4.2 deg during IE rotations, and 2.0 ± 1.2 deg during VV rotations. Interclass correlation coefficients (ICCs) indicated a good level of reliability for AP and IE laxity (0.85 and 0.84). To conclude, the advancement of virtual ligament envelopes as a more realistic representation of soft tissue constraint around TKA joints is a valuable approach for obtaining clinically relevant kinematics when testing TKA components on joint motion simulators.

References

1.
Carr
,
A. J.
,
Robertsson
,
O.
,
Graves
,
S.
,
Price
,
A. J.
,
Arden
,
N. K.
,
Judge
,
A.
, and
Beard
,
D. J.
,
2012
, “
Knee Replacement
,”
Lancet
,
379
(
9823
), pp.
1331
1340
.10.1016/S0140-6736(11)60752-6
2.
Scott
,
D. F.
,
2018
, “
Prospective Randomized Comparison of Posterior-Stabilized Versus Condylar-Stabilized Total Knee Arthroplasty: Final Report of a Five-Year Study
,”
J Arthroplasty
,
33
(
5
), pp.
1384
1388
.10.1016/j.arth.2017.11.037
3.
Sur
,
Y.-J.
,
Koh
,
I.-J.
,
Park
,
S.-W.
,
Kim
,
H.-J.
, and
In
,
Y.
,
2015
, “
Condylar-Stabilizing Tibial Inserts Do Not Restore Anteroposterior Stability After Total Knee Arthroplasty
,”
J Arthroplasty
,
30
(
4
), pp.
587
591
.10.1016/j.arth.2014.11.018
4.
Song
,
E.-K.
,
Lim
,
H.-A.
,
Joo
,
S.-D.
,
Kim
,
S.-K.
,
Lee
,
K.-B.
, and
Seon
,
J.-K.
,
2017
, “
Total Knee Arthroplasty Using Ultra-Congruent Inserts Can Provide Similar Stability and Function Compared With Cruciate-Retaining Total Knee Arthroplasty
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
25
(
11
), pp.
3530
3535
.10.1007/s00167-017-4553-3
5.
Bae
,
J.-H.
,
Yoon
,
J.-R.
,
Sung
,
J.-H.
, and
Shin
,
Y.-S.
,
2018
, “
Posterior-Stabilized Inserts Are Preferable to Cruciate-Substituting Ultracongruent Inserts Due to More Favourable Kinematics and Stability
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
26
(
11
), pp.
3300
3310
.10.1007/s00167-018-4872-z
6.
Willing
,
R.
,
Moslemian
,
A.
,
Yamomo
,
G.
,
Wood
,
T.
,
Howard
,
J.
, and
Lanting
,
B.
,
2019
, “
Condylar‐Stabilized TKR May Not Fully Compensate for PCL‐Deficiency: An In Vitro Cadaver Study
,”
J. Orthop. Res.
,
37
(
10
), pp.
2172
2181
.10.1002/jor.24392
7.
Dolan
,
M. M.
,
Kelly
,
N. H.
,
Nguyen
,
J. T.
,
Wright
,
T. M.
, and
Haas
,
S. B.
,
2011
, “
Implant Design Influences Tibial Post Wear Damage in Posterior-Stabilized Knees
,”
Clin. Orthop. Relat. Res.
,
469
(
1
), pp.
160
167
.10.1007/s11999-010-1515-1
8.
Sharkey
,
P. F.
,
Lichstein
,
P. M.
,
Shen
,
C.
,
Tokarski
,
A. T.
, and
Parvizi
,
J.
,
2014
, “
Why Are Total Knee Arthroplasties Failing Today—Has Anything Changed After 10 Years?
,”
J. Arthroplasty
,
29
(
9
), pp.
1774
1778
.10.1016/j.arth.2013.07.024
9.
Lombardi
,
A. V.
Jr.
,
Berend
,
K. R.
, and
Adams
,
J. B.
,
2014
, “
Why Knee Replacements Fail in 2013: Patient, Surgeon, or Implant?
,”
Bone Jt. J.
,
96-B
(
11_Supple_A
), pp.
101
104
.10.1302/0301-620X.96B11.34350
10.
Keeney
,
J. A.
,
Clohisy
,
J. C.
,
Curry
,
M.
, and
Maloney
,
W. J.
,
2005
, “
Revision Total Knee Arthroplasty for Restricted Motion
,”
Clin. Orthop. Relat. Res.
,
440
(
&NA
), pp.
135
140
.10.1097/01.blo.0000185312.43955.c8
11.
Bozic
,
K. J.
,
Kurtz
,
S. M.
,
Lau
,
E.
,
Ong
,
K.
,
Chiu
,
V.
,
Vail
,
T. P.
,
Rubash
,
H. E.
, and
Berry
,
D. J.
,
2010
, “
The Epidemiology of Revision Total Knee Arthroplasty in the United States
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
45
51
.10.1007/s11999-009-0945-0
12.
Mulhall
,
K. J.
,
Ghomrawi
,
H. M.
,
Scully
,
S.
,
Callaghan
,
J. J.
, and
Saleh
,
K. J.
,
2006
, “
Current Etiologies and Modes of Failure in Total Knee Arthroplasty Revision
,”
Clin. Orthop. Relat. Res.
,
446
, pp.
45
50
.10.1097/01.blo.0000214421.21712.62
13.
Haider
,
H.
, and
Walker
,
P. S.
,
2005
, “
Measurements of Constraint of Total Knee Replacement
,”
J. Biomech.
,
38
(
2
), pp.
341
348
.10.1016/j.jbiomech.2004.02.014
14.
Luger
,
E.
,
Sathasivam
,
S.
, and
Walker
,
P. S.
,
1997
, “
Inherent Differences in the Laxity and Stability Between the Intact Knee and Total Knee Replacements
,”
Knee
,
4
(
1
), pp.
7
14
.10.1016/S0968-0160(96)00224-4
15.
Abdel-Jaber
,
S.
,
Belvedere
,
C.
,
Leardini
,
A.
, and
Affatato
,
S.
,
2015
, “
Wear Simulation of Total Knee Prostheses Using Load and Kinematics Waveforms From Stair Climbing
,”
J. Biomech.
,
48
(
14
), pp.
3830
3836
.10.1016/j.jbiomech.2015.09.007
16.
Halloran
,
J. P.
,
Clary
,
C. W.
,
Maletsky
,
L. P.
,
Taylor
,
M.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2010
, “
Verification of Predicted Knee Replacement Kinematics During Simulated Gait in the Kansas Knee Simulator
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081010
.10.1115/1.4001678
17.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
,
2002
, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
,
35
(
2
), pp.
267
275
.10.1016/S0021-9290(01)00179-8
18.
Willing
,
R.
, and
Walker
,
P. S.
,
2018
, “
Measuring the Sensitivity of Total Knee Replacement Kinematics and Laxity to Soft Tissue Imbalances
,”
J. Biomech.
,
77
, pp.
62
68
.10.1016/j.jbiomech.2018.06.019
19.
McKellop
,
H. A.
, and
D'Lima
,
D.
,
2008
, “
How Have Wear Testing and Joint Simulator Studies Helped to Discriminate Among Materials and Designs?
,”
JAAOS-J. Am. Acad. Orthop. Surg.
,
16
, pp.
S111
S119
.10.5435/00124635-200800001-00022
20.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.10.1016/j.jbiomech.2011.11.052
21.
Chen
,
Z.
,
Zhang
,
Z.
,
Wang
,
L.
,
Li
,
D.
,
Zhang
,
Y.
, and
Jin
,
Z.
,
2016
, “
Evaluation of a Subject-Specific Musculoskeletal Modelling Framework for Load Prediction in Total Knee Arthroplasty
,”
Med. Eng. Phys.
,
38
(
8
), pp.
708
716
.10.1016/j.medengphy.2016.04.010
22.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
,
38
(
2
), pp.
323
331
.10.1016/j.jbiomech.2004.02.046
23.
Navacchia
,
A.
,
Rullkoetter
,
P. J.
,
Schütz
,
P.
,
List
,
R. B.
,
Fitzpatrick
,
C. K.
, and
Shelburne
,
K. B.
,
2016
, “
Subject‐Specific Modeling of Muscle Force and Knee Contact in Total Knee Arthroplasty
,”
J. Orthop. Res.
,
34
(
9
), pp.
1576
1587
.10.1002/jor.23171
24.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
25.
Bendjaballah
,
M.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech.
,
12
(
3
), pp.
139
148
.10.1016/S0268-0033(97)00072-7
26.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.10.1016/0021-9290(95)00149-2
27.
Yang
,
Z.
,
Wickwire
,
A. C.
, and
Debski
,
R. E.
,
2010
, “
Development of a Subject-Specific Model to Predict the Forces in the Knee Ligaments at High Flexion Angles
,”
Med. Biol. Eng. Comput.
,
48
(
11
), pp.
1077
1085
.10.1007/s11517-010-0653-7
28.
Kazemi
,
M.
,
Dabiri
,
Y.
, and
Li
,
L.
,
2013
, “
Recent Advances in Computational Mechanics of the Human Knee Joint
,”
Comput. Math. Methods Med.
,
2013
, pp.
1
27
.10.1155/2013/718423
29.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
0810041
.10.1115/1.4033882
30.
DesJardins
,
J. D.
,
Walker
,
P. S.
,
Haider
,
H.
, and
Perry
,
J.
,
2000
, “
The Use of a Force-Controlled Dynamic Knee Simulator to Quantify the Mechanical Performance of Total Knee Replacement Designs During Functional Activity
,”
J. Biomech.
,
33
(
10
), pp.
1231
1242
.10.1016/S0021-9290(00)00094-4
31.
Benson
,
L. C.
,
DesJardins
,
J. D.
, and
LaBerge
,
M.
,
2001
, “
Effects of In Vitro Wear of Machined and Molded UHMWPE Tibial Inserts on TKR Kinematics
,”
J. Biomed. Mater. Res.
,
58
(
5
), pp.
496
504
.10.1002/jbm.1046
32.
Bauer
,
L.
,
Kistler
,
M.
,
Steinbrück
,
A.
,
Ingr
,
K.
,
Müller
,
P. E.
,
Jansson
,
V.
,
Schröder
,
C.
, and
Woiczinski
,
M.
,
2021
, “
Different ISO Standards' Wear Kinematic Profiles Change the TKA Inlay Load
,”
Appl. Sci.
,
11
(
7
), p.
3161
.10.3390/app11073161
33.
Kretzer
,
J. P.
,
Jakubowitz
,
E.
,
Sonntag
,
R.
,
Hofmann
,
K.
,
Heisel
,
C.
, and
Thomsen
,
M.
,
2010
, “
Effect of Joint Laxity on Polyethylene Wear in Total Knee Replacement
,”
J. Biomech.
,
43
(
6
), pp.
1092
1096
.10.1016/j.jbiomech.2009.12.016
34.
Sharifi Kia
,
D.
, and
Willing
,
R.
,
2018
, “
Applying a Hybrid Experimental-Computational Technique to Study Elbow Joint Ligamentous Stabilizers
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061012
.10.1115/1.4039674
35.
Sidhu
,
S. P.
,
Moslemian
,
A.
,
Yamomo
,
G.
,
Vakili
,
S.
,
Kelly
,
P.
,
Willing
,
R. T.
, and
Lanting
,
B. A.
,
2020
, “
Lateral Subvastus Lateralis Versus Medial Parapatellar Approach for Total Knee Arthroplasty: A Cadaveric Biomechanical Study
,”
Knee
,
27
(
6
), pp.
1735
1745
.10.1016/j.knee.2020.09.022
36.
Zaylor
,
W.
,
Stulberg
,
B. N.
, and
Halloran
,
J. P.
,
2019
, “
Use of Distraction Loading to Estimate Subject-Specific Knee Ligament Slack Lengths
,”
J. Biomech.
,
92
, pp.
1
5
.10.1016/j.jbiomech.2019.04.040
37.
Sakane
,
M.
,
Fox
,
R. J.
,
Glen
,
S. L. W.
,
Livesay
,
A.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
In Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads
,”
J. Orthop. Res.
,
15
(
2
), pp.
285
293
.10.1002/jor.1100150219
38.
Willing
,
R. T.
,
Lalone
,
E. A.
,
Shannon
,
H.
,
Johnson
,
J. A.
, and
King
,
G. J. W.
,
2013
, “
Validation of a Finite Element Model of the Human Elbow for Determining Cartilage Contact Mechanics
,”
J. Biomech.
,
46
(
10
), pp.
1767
1771
. 10.1016/j.jbiomech.2013.04.001
39.
Lalone
,
E. A.
,
Willing
,
R. T.
,
Shannon
,
H. L.
,
King
,
G. J. W.
, and
Johnson
,
J. A.
,
2015
, “
Accuracy Assessment of 3D Bone Reconstructions Using CT: An Intro Comparison
,”
Med. Eng. Phys.
,
37
(
8
), pp.
729
738
.10.1016/j.medengphy.2015.04.010
40.
*
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
Method for Registration of 3-D Shapes
,”
Proceedings SPIE 1611, Sensor Fusion IV: Control Paradigms and Data Structures
,
Boston, MA
, pp.
586
606
.10.1117/12.57955
41.
Athwal
,
K. K.
,
Willinger
,
L.
,
Shinohara
,
S.
,
Ball
,
S.
,
Williams
,
A.
, and
Amis
,
A. A.
,
2020
, “
The Bone Attachments of the Medial Collateral and Posterior Oblique Ligaments Are Defined Anatomically and Radiographically
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
28
(
12
), pp.
3709
3719
.10.1007/s00167-020-06139-6
42.
Bedi
,
A.
,
LaPrade
,
R. F.
, and
Burrus
,
M. T.
,
2018
, “
Radiographic and Anatomic Landmarks of the Major Knee Ligaments
,”
JBJS
,
100
(
14
), pp.
1241
1250
.10.2106/JBJS.17.01135
43.
Amberg
,
B.
,
Romdhani
,
S.
, and
Vetter
,
T.
,
2007
, “
Optimal Step Nonrigid ICP Algorithms for Surface Registration
,”
2007 IEEE Conference on Computer Vision and Pattern Recognition
,
Minneapolis, MN
,
June 17–22
, pp.
1
8
.10.1109/CVPR.2007.383165
44.
Audenaert
,
E. A.
,
van Houcke
,
J.
,
Almeida
,
D. F.
,
Paelinck
,
L.
,
Peiffer
,
M.
,
Steenackers
,
G.
, and
Vandermeulen
,
D.
,
2019
, “
Cascaded Statistical Shape Model Based Segmentation of the Full Lower Limb in CT
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
6
), pp.
644
657
.10.1080/10255842.2019.1577828
45.
Qiu
,
D.
, and
Lui
,
L. M.
,
2020
, “
Inconsistent Surface Registration Via Optimization of Mapping Distortions
,”
J. Sci. Comput.
,
83
(
3
), pp.
1
31
.10.1007/s10915-020-01246-5
46.
Dai
,
H.
,
Pears
,
N.
, and
Smith
,
W.
,
2018
, “
Non-Rigid 3D Shape Registration Using an Adaptive Template
,”
Proceedings of 18th IEEE European Conference on Computer Vision (ECCV)
,
Berlin, Germany
,
Sept. 8–14
, pp.
48
63
.https://openaccess.thecvf.com/content_ECCVW_2018/papers/11132/Dai_Nonrigid_3D_Shape_Registration_using_an_Adaptive_Template_ECCVW_2018_paper.pdf
47.
Cheng
,
S.
,
Marras
,
I.
,
Zafeiriou
,
S.
, and
Pantic
,
M.
,
2017
, “
Statistical Non-Rigid ICP Algorithm and Its Application to 3D Face Alignment
,”
Image Vis. Comput.
,
58
, pp.
3
12
.10.1016/j.imavis.2016.10.007
48.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
49.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.10.1114/1.1484219
50.
Mommersteeg
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
, and
Kauer
,
J. M. G.
,
1996
, “
Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach
,”
J. Biomech.
,
29
(
2
), pp.
151
160
.10.1016/0021-9290(95)00040-2
51.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S.-Y.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
, 121(6), pp.
657
662
.10.1115/1.2800871
52.
Bloemker
,
K. H.
,
Guess
,
T. M.
,
Maletsky
,
L.
, and
Dodd
,
K.
,
2012
, “
Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths
,”
Open Biomed. Eng. J.
,
6
(
1
), pp.
33
41
.10.2174/1874120701206010033
53.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1991
, “
Recruitment of Knee Joint Ligaments
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
94
103
.10.1115/1.2894090
54.
Amiri
,
S.
,
Cooke
,
D.
,
Kim
,
I. Y.
, and
Wyss
,
U.
,
2007
, “
Mechanics of the Passive Knee Joint. Part 2: Interaction Between the Ligaments and the Articular Surfaces in Guiding the Joint Motion
,”
Proc. Inst. Mech. Eng. H
,
221
(
8
), pp.
821
832
.10.1243/09544119JEIM181
55.
Bland
,
J. M.
, and
Altman
,
D.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
327
(
8476
), pp.
307
310
.10.1016/S0140-6736(86)90837-8
56.
Koo
,
T. K.
, and
Li
,
M. Y.
,
2016
, “
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
,”
J. Chiropr. Med..
15
(
2
), pp.
155
163
.10.1016/j.jcm.2016.02.012
57.
Ewing
,
J. A.
,
Kaufman
,
M. K.
,
Hutter
,
E. E.
,
Granger
,
J. F.
,
Beal
,
M. D.
,
Piazza
,
S. J.
, and
Siston
,
R. A.
,
2016
, “
Estimating Patient‐Specific Soft‐Tissue Properties in a TKA Knee
,”
J. Orthop. Res.
,
34
(
3
), pp.
435
443
.10.1002/jor.23032
58.
Guess
,
T. M.
, and
Razu
,
S.
,
2017
, “
Loading of the Medial Meniscus in the ACL Deficient Knee: A Multibody Computational Study
,”
Med. Eng. Phys.
,
41
, pp.
26
34
.10.1016/j.medengphy.2016.12.006
59.
Markolf
,
K. L.
,
Mensch
,
J. S.
, and
Amstutz
,
H. C.
,
1976
, “
Stiffness and Laxity of the Knee–the Contributions of the Supporting Structures. A Quantitative In Vitro Study
,”
JBJS
,
58
(
5
), pp.
583
594
.10.2106/00004623-197658050-00001
60.
Farshidfar
,
S. S.
,
Cadman
,
J.
,
Deng
,
D.
,
Appleyard
,
R.
, and
Dabirrahmani
,
D.
,
2022
, “
The Effect of Modelling Parameters in the Development and Validation of Knee Joint Models on Ligament Mechanics: A Systematic Review
,”
PLoS One
,
17
(
1
), p.
e0262684
.10.1371/journal.pone.0262684
61.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
263
269
.10.1115/1.2894883
62.
Hu
,
J.
,
Chen
,
Z.
,
Xin
,
H.
,
Zhang
,
Q.
, and
Jin
,
Z.
,
2018
, “
Musculoskeletal Multibody Dynamics Simulation of the Contact Mechanics and Kinematics of a Natural Knee Joint During a Walking Cycle
,”
Proc. Inst. Mech. Eng. H
,
232
(
5
), pp.
508
519
.10.1177/0954411918767695
63.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.10.1016/j.jbiomech.2003.10.010
64.
Moeinzadeh
,
M. H.
, and
Engin
,
A. E.
,
1983
, “
Response of a Two-Dimensional Dynamic Model of the Human Knee to the Externally Applied Forces and Moments
,”
J. Biomed. Eng.
,
5
(
4
), pp.
281
291
.10.1016/0141-5425(83)90002-X
65.
Moglo
,
K. E.
, and
Shirazi-Adl
,
A.
,
2003
, “
On the Coupling Between Anterior and Posterior Cruciate Ligaments, and Knee Joint Response Under Anterior Femoral Drawer in Flexion: A Finite Element Study
,”
Clin. Biomech.
,
18
(
8
), pp.
751
759
.10.1016/S0268-0033(03)00140-2
66.
Beidokhti
,
H. N.
,
Janssen
,
D.
,
van de Groes
,
S.
, and
Verdonschot
,
N.
,
2018
, “
The Peripheral Soft Tissues Should Not Be Ignored in the Finite Element Models of the Human Knee Joint
,”
Med. Biol. Eng. Comput.
,
56
(
7
), pp.
1189
1199
.10.1007/s11517-017-1757-0
67.
Vakili
,
S.
,
2022
, “
Development of a Combined Experimental-Computational Framework to Study Human Knee Biomechanics
,”
Electronic Thesis and Dissertation Repository
.
9056
.https://ir.lib.uwo.ca/etd/9056
68.
Sekeitto
,
A. R.
,
2021
, “
Kinematics in Total Knee Arthroplasty
,”
Electronic Thesis and Dissertation Repository
.
7938
.https://ir.lib.uwo.ca/etd/7938
You do not currently have access to this content.