Abstract

Chiari malformation Type I (CMI) is known to have an altered biomechanical environment for the brainstem and cerebellum; however, it is unclear whether these altered biomechanics play a role in the development of CMI symptoms. We hypothesized that CMI subjects have a higher cardiac-induced strain in specific neurological tracts pertaining to balance, and postural control. We measured displacement over the cardiac cycle using displacement encoding with stimulated echoes magnetic resonance imaging in the cerebellum, brainstem, and spinal cord in 37 CMI subjects and 25 controls. Based on these measurements, we computed strain, translation, and rotation in tracts related to balance. The global strain on all tracts was small (<1%) for CMI subject and controls. Strain was found to be nearly doubled in three tracts for CMI subjects compared to controls (p < 0.03). The maximum translation and rotation were ∼150 μm and ∼1 deg, respectively and 1.5–2 times greater in CMI compared to controls in four tracts (p < 0.005). There was no significant difference between strain, translation, and rotation on the analyzed tracts in CMI subjects with imbalance compared to those without imbalance. A moderate correlation was found between cerebellar tonsillar position and strain on three tracts. The lack of statistically significant difference between strain in CMI subjects with and without imbalance could imply that the magnitude of the observed cardiac-induced strain was too small to cause substantial damage to the tissue (<1%). Activities such as coughing, or Valsalva may produce a greater strain.

References

1.
Williams
,
B.
,
1981
, “
Simultaneous Cerebral and Spinal Fluid Pressure Recordings. 2. Cerebrospinal Dissociation With Lesions at the Foramen Magnum
,”
Acta Neurochir (Wien)
,
59
(
1–2
), pp.
123
142
.10.1007/BF01411198
2.
Wolpert
,
S. M.
,
Bhadelia
,
R. A.
,
Bogdan
,
A. R.
, and
Cohen
,
A. R.
,
1994
, “
Chiari I Malformations: Assessment With Phase-Contrast Velocity MR
,”
AJNR Am. J. Neuroradiol.
,
15
(
7
), pp.
1299
–1
308
.https://pubmed.ncbi.nlm.nih.gov/7976942/
3.
Pujol
,
J.
,
Roig
,
C.
,
Capdevila
,
A.
,
Pou
,
A.
,
Marti-Vilalta
,
J. L.
,
Kulisevsky
,
J.
,
Escartin
,
A.
, and
Zannoli
,
G.
,
1995
, “
Motion of the Cerebellar Tonsils in Chiari Type I Malformation Studied by Cine Phase-Contrast MRI
,”
Neurology
,
45
(
9
), pp.
1746
1753
.10.1212/WNL.45.9.1746
4.
Alperin
,
N.
,
Loftus
,
J. R.
,
Oliu
,
C. J.
,
Bagci
,
A. M.
,
Lee
,
S. H.
,
Ertl-Wagner
,
B.
,
Green
,
B.
, and
Sekula
,
R.
,
2014
, “
Magnetic Resonance Imaging Measures of Posterior Cranial Fossa Morphology and Cerebrospinal Fluid Physiology in Chiari Malformation Type I
,”
Neurosurgery
,
75
(
5
), pp.
515
522
.10.1227/NEU.0000000000000507
5.
Hofmann
,
E.
,
Warmuth-Metz
,
M.
,
Bendszus
,
M.
, and
Solymosi
,
L.
,
2000
, “
Phase-Contrast MR Imaging of the Cervical CSF and Spinal Cord: Volumetric Motion Analysis in Patients With Chiari I Malformation
,”
AJNR Am. J. Neuroradiol.
,
21
(
1
), pp.
151
–15
8
.https://pubmed.ncbi.nlm.nih.gov/10669242/
6.
Houston
,
M. L.
,
Houston
,
J. R.
,
Sakaie
,
K.
,
Klinge
,
P. M.
,
Vorster
,
S.
,
Luciano
,
M.
,
Loth
,
F.
, et al.,
2021
, “
Functional Connectivity Abnormalities in Type I Chiari: Associations With Cognition and Pain
,”
Brain Commun.
,
3
(
3
), p.
fcab137
.10.1093/braincomms/fcab137
7.
Paul
,
K. S.
,
Lye
,
R. H.
,
Strang
,
F. A.
, and
Dutton
,
J.
,
1983
, “
Arnold-Chiari Malformation. Review of 71 Cases
,”
J. Neurosurg.
,
58
(
2
), pp.
183
187
.10.3171/jns.1983.58.2.0183
8.
Milhorat
,
T. H.
,
Chou
,
M. W.
,
Trinidad
,
E. M.
,
Kula
,
R. W.
,
Mandell
,
M.
,
Wolpert
,
C.
, and
Speer
,
M. C.
,
1999
, “
Chiari I Malformation Redefined: Clinical and Radiographic Findings for 364 Symptomatic Patients
,”
Neurosurgery
,
44
(
5
), pp.
1005
1017
.10.1097/00006123-199905000-00042
9.
Sommers
,
B. N.
, and
Davis
,
B. L.
,
2021
, “
Examining Feedback Mechanisms of Postural Control in Chiari Malformation by Average Wavelet Coefficient Decomposition and the Hurst Exponent
,”
Gait Posture
,
88
, pp.
280
285
.10.1016/j.gaitpost.2021.05.028
10.
Smith
,
A. W.
, and
Wong del
,
P.
,
2012
, “
Effects of Window Size on Ankle Joint Stiffness Calculation During Quiet Standing: How the Rule Changes the Result
,”
J. Biomech.
,
45
(
13
), pp.
2301
2305
.10.1016/j.jbiomech.2012.06.001
11.
Jacobson
,
S.
,
Marcus
,
E. M.
, and
Pugsley
,
S.
,
2018
,
Neuroanatomy for the Neuroscientist
, 3rd ed.,
Springer
,
Cham, Switzerland
.
12.
MacKinnon
,
C. D.
,
2018
, “
Sensorimotor Anatomy of Gait, Balance, and Falls
,”
Handbook Clin. Neurol.
,
159
, pp.
3
26
.10.1016/B978-0-444-63916-5.00001-X
13.
Haines
,
D. E.
, and
Mihailoff
,
G. A.
,
2018
,
Fundamental Neuroscience for Basic and Clinical Applications
, 5th ed.,
Elsevier
,
Philadelphia, PA
.
14.
Roostaei
,
T.
,
Nazeri
,
A.
,
Sahraian
,
M. A.
, and
Minagar
,
A.
,
2014
, “
The Human Cerebellum: A Review of Physiologic Neuroanatomy
,”
Neurol. Clin.
,
32
(
4
), pp.
859
869
.10.1016/j.ncl.2014.07.013
15.
Collins
,
R. A.
,
John
,
A.
,
Daniel
,
H.
,
Garza
,
J.
,
Nagy
,
L.
, and
Jacob
,
R.
,
2022
, “
Association of Cerebellar Tonsil Dynamic Motion and Outcomes in Pediatric Chiari I Malformation
,”
World Neurosurg.
, 168, pp.
e518
e529
.10.1016/j.wneu.2022.10.013
16.
Lawrence
,
B. J.
,
Luciano
,
M.
,
Tew
,
J.
,
Ellenbogen
,
R. G.
,
Oshinski
,
J. N.
,
Loth
,
F.
,
Culley
,
A. P.
, and
Martin
,
B. A.
,
2018
, “
Cardiac-Related Spinal Cord Tissue Motion at the Foramen Magnum is Increased in Patients With Type I Chiari Malformation and Decreases Postdecompression Surgery
,”
World Neurosurg.
,
116
, pp.
e298
e307
.10.1016/j.wneu.2018.04.191
17.
Leung
,
V.
,
Magnussen
,
J. S.
,
Stoodley
,
M. A.
, and
Bilston
,
L. E.
,
2016
, “
Cerebellar and Hindbrain Motion in Chiari Malformation With and Without Syringomyelia
,”
J. Neurosurg. Spine
,
24
(
4
), pp.
546
555
.10.3171/2015.8.SPINE15325
18.
Eppelheimer
,
M. S.
,
Nwotchouang
,
B. S. T.
,
Heidari Pahlavian
,
S.
,
Barrow
,
J. W.
,
Barrow
,
D. L.
,
Amini
,
R.
,
Allen
,
P. A.
,
Loth
,
F.
, and
Oshinski
,
J. N.
,
2021
, “
Cerebellar and Brainstem Displacement Measured With DENSE MRI in Chiari Malformation Following Posterior Fossa Decompression Surgery
,”
Radiology
,
301
(
1
), pp.
187
194
.10.1148/radiol.2021203036
19.
Nwotchouang
,
B. S. T.
,
Eppelheimer
,
M. S.
,
Pahlavian
,
S. H.
,
Barrow
,
J. W.
,
Barrow
,
D. L.
,
Qiu
,
D.
,
Allen
,
P. A.
,
Oshinski
,
J. N.
,
Amini
,
R.
, and
Loth
,
F.
,
2021
, “
Regional Brain Tissue Displacement and Strain is Elevated in Subjects With Chiari Malformation Type I Compared to Healthy Controls: A Study Using DENSE MRI
,”
Ann. Biomed. Eng.
,
49
(
6
), pp.
1462
1476
.10.1007/s10439-020-02695-7
20.
Pahlavian
,
S. H.
,
Oshinski
,
J.
,
Zhong
,
X.
,
Loth
,
F.
, and
Amini
,
R.
,
2018
, “
Regional Quantification of Brain Tissue Strain Using Displacement-Encoding With Stimulated Echoes Magnetic Resonance Imaging
,”
ASME J. Biomech. Eng.
,
140
(
8
), p.
081010
.10.1115/1.4040227
21.
Zhong
,
X.
,
Meyer
,
C. H.
,
Schlesinger
,
D. J.
,
Sheehan
,
J. P.
,
Epstein
,
F. H.
,
Larner
,
J. M.
,
Benedict
,
S. H.
,
Read
,
P. W.
,
Sheng
,
K.
, and
Cai
,
J.
,
2009
, “
Tracking Brain Motion During the Cardiac Cycle Using Spiral cine-DENSE MRI
,”
Med. Phys.
,
36
(
8
), pp.
3413
3419
.10.1118/1.3157109
22.
Dawes
,
B. H.
,
Lloyd
,
R. A.
,
Rogers
,
J. M.
,
Magnussen
,
J. S.
,
Bilston
,
L. E.
, and
Stoodley
,
M. A.
,
2019
, “
Cerebellar Tissue Strain in Chiari Malformation With Headache
,”
World Neurosurg.
,
130
, pp.
e74
e81
.10.1016/j.wneu.2019.05.211
23.
Soellinger
,
M.
,
Rutz
,
A. K.
,
Kozerke
,
S.
, and
Boesiger
,
P.
,
2009
, “
3D Cine Displacement-Encoded MRI of Pulsatile Brain Motion
,”
Magn. Reson. Med.
,
61
(
1
), pp.
153
162
.10.1002/mrm.21802
24.
Oldfield
,
E. H.
,
Muraszko
,
K.
,
Shawker
,
T. H.
, and
Patronas
,
N. J.
,
1994
, “
Pathophysiology of Syringomyelia Associated With Chiari I Malformation of the Cerebellar Tonsils. Implications for Diagnosis and Treatment
,”
J. Neurosurg.
,
80
(
1
), pp.
3
15
.10.3171/jns.1994.80.1.0003
25.
Terae
,
S.
,
Miyasaka
,
K.
,
Abe
,
S.
,
Abe
,
H.
, and
Tashiro
,
K.
,
1994
, “
Increased Pulsatile Movement of the Hindbrain in Syringomyelia Associated With the Chiari Malformation: Cine-MRI With Presaturation Bolus Tracking
,”
Neuroradiology
,
36
(
2
), pp.
125
129
.10.1007/BF00588077
26.
Adams
,
A. L.
,
Kuijf
,
H. J.
,
Viergever
,
M. A.
,
Luijten
,
P. R.
, and
Zwanenburg
,
J. J. M.
,
2019
, “
Quantifying Cardiac-Induced Brain Tissue Expansion Using DENSE
,”
NMR Biomed.
,
32
(
2
), p.
e4050
.10.1002/nbm.4050
27.
Adams
,
A. L.
,
Viergever
,
M. A.
,
Luijten
,
P. R.
, and
Zwanenburg
,
J. J. M.
,
2020
, “
Validating Faster DENSE Measurements of Cardiac-Induced Brain Tissue Expansion as a Potential Tool for Investigating Cerebral Microvascular Pulsations
,”
Neuroimage
,
208
, p.
116466
.10.1016/j.neuroimage.2019.116466
28.
Kim
,
D.
,
Gilson
,
W. D.
,
Kramer
,
C. M.
, and
Epstein
,
F. H.
,
2004
, “
Myocardial Tissue Tracking With Two-Dimensional Cine Displacement-Encoded MR Imaging: Development and Initial Evaluation
,”
Radiology
,
230
(
3
), pp.
862
871
.10.1148/radiol.2303021213
29.
Hosoki
,
M.
,
Bruckert
,
L.
,
Borchers
,
L. R.
,
Marchman
,
V. A.
,
Travis
,
K. E.
, and
Feldman
,
H. M.
,
2022
, “
Associations of Behavioral Problems and White Matter Properties of the Cerebellar Peduncles in Boys and Girls Born Full Term and Preterm
,”
Cerebellum
,
22
(
2
), pp.
163
172
.10.1007/s12311-022-01375-7
30.
Biswas
,
D.
,
Eppelheimer
,
M. S.
,
Houston
,
J. R.
,
Ibrahimy
,
A.
,
Bapuraj
,
J. R.
,
Labuda
,
R.
,
Allen
,
P. A.
,
Frim
,
D.
, and
Loth
,
F.
,
2019
, “
Quantification of Cerebellar Crowding in Type I Chiari Malformation
,”
Ann. Biomed. Eng.
,
47
(
3
), pp.
731
743
.10.1007/s10439-018-02175-z
31.
Houston
,
J. R.
,
Allen
,
P. A.
,
Rogers
,
J. M.
,
Lien
,
M.-C.
,
Allen
,
N. J.
,
Hughes
,
M. L.
,
Bapuraj
,
J. R.
,
Eppelheimer
,
M. S.
,
Loth
,
F.
,
Stoodley
,
M. A.
,
Vorster
,
S. J.
, and
Luciano
,
M. G.
,
2019
, “
Type I Chiari Malformation, RBANS Performance, and Brain Morphology: Connecting the Dots on Cognition and Macrolevel Brain Structure.
,”
Neuropsychology
,
33
(
5
), pp.
725
738
.10.1037/neu0000547
32.
Sloots
,
J. J.
,
Biessels
,
G. J.
, and
Zwanenburg
,
J. J. M.
,
2020
, “
Cardiac and Respiration-Induced Brain Deformations in Humans Quantified With High-Field MRI
,”
Neuroimage
,
210
, p.
116581
.10.1016/j.neuroimage.2020.116581
33.
Nwotchouang
,
B. S. T.
,
Eppelheimer
,
M. S.
,
Biswas
,
D.
,
Pahlavian
,
S. H.
,
Zhong
,
X.
,
Oshinski
,
J. N.
,
Barrow
,
D. L.
,
Amini
,
R.
, and
Loth
,
F.
,
2021
, “
Accuracy of Cardiac-Induced Brain Motion Measurement Using Displacement-Encoding With Stimulated Echoes (DENSE) Magnetic Resonance Imaging (MRI): A Phantom Study
,”
Magn. Reson. Med.
,
85
(
3
), pp.
1237
1247
.10.1002/mrm.28490
34.
Chen
,
F. C.
,
Tsai
,
C. L.
,
Chang
,
W. D.
,
Li
,
Y. C.
,
Chou
,
C. L.
, and
Wu
,
S. K.
,
2015
, “
Postural Control of Anteroposterior and Mediolateral Sway in Children With Probable Developmental Coordination Disorder
,”
Pediatr. Phys. Ther.
,
27
(
4
), pp.
328
335
.10.1097/PEP.0000000000000186
35.
Barbado
,
D.
,
Gomez-Illan
,
R.
,
Moreno-Navarro
,
P.
,
Valero-Conesa
,
G.
,
Reina
,
R.
, and
Vera-Garcia
,
F. J.
,
2020
, “
Postural Control Quantification in Minimally and Moderately Impaired Persons With Multiple Sclerosis: The Reliability of a Posturographic Test and Its Relationships With Functional Ability
,”
J. Sport Health Sci.
,
9
(
6
), pp.
677
684
.10.1016/j.jshs.2018.06.008
36.
Yildiz
,
S.
,
Thyagaraj
,
S.
,
Jin
,
N.
,
Zhong
,
X.
,
Heidari Pahlavian
,
S.
,
Martin
,
B. A.
,
Loth
,
F.
,
Oshinski
,
J.
, and
Sabra
,
K. G.
,
2017
, “
Quantifying the Influence of Respiration and Cardiac Pulsations on Cerebrospinal Fluid Dynamics Using Real-Time Phase-Contrast MRI
,”
J. Magn Reson Imaging
,
46
(
2
), pp.
431
439
.10.1002/jmri.25591
You do not currently have access to this content.