Abstract

The blood–brain barrier (BBB) is a dynamic regulatory barrier at the interface of blood circulation and the brain parenchyma, which plays a critical role in protecting homeostasis in the central nervous system. However, it also significantly impedes drug delivery to the brain. Understanding the transport across BBB and brain distribution will facilitate the prediction of drug delivery efficiency and the development of new therapies. To date, various methods and models have been developed to study drug transport at the BBB interface, including in vivo brain uptake measurement methods, in vitro BBB models, and mathematic brain vascular models. Since the in vitro BBB models have been extensively reviewed elsewhere, we provide a comprehensive summary of the brain transport mechanisms and the currently available in vivo methods and mathematic models in studying the molecule delivery process at the BBB interface. In particular, we reviewed the emerging in vivo imaging techniques in observing drug transport across the BBB. We discussed the advantages and disadvantages associated with each model to serve as a guide for model selection in studying drug transport across the BBB. In summary, we envision future directions to improve the accuracy of mathematical models, establish noninvasive in vivo measurement techniques, and bridge the preclinical studies with clinical translation by taking the altered BBB physiological conditions into consideration. We believe these are critical in guiding new drug development and precise drug administration in brain disease treatment.

References

1.
Montagne
,
A.
,
Zhao
,
Z.
, and
Zlokovic
,
B. V.
,
2017
, “
Alzheimer's Disease: A Matter of Blood-Brain Barrier Dysfunction?
,”
J. Exp. Med.
,
214
(
11
), pp.
3151
3169
.10.1084/jem.20171406
2.
Pardridge
,
W. M.
,
2007
, “
Blood-Brain Barrier Delivery
,”
Drug Discovery Today
,
12
(
1–2
), pp.
54
61
.10.1016/j.drudis.2006.10.013
3.
Abdullahi
,
W.
,
Tripathi
,
D.
, and
Ronaldson
,
P. T.
,
2018
, “
Blood-Brain Barrier Dysfunction in Ischemic Stroke: Targeting Tight Junctions and Transporters for Vascular Protection
,”
Am. J. Physiol. Cell Physiol.
,
315
(
3
), pp.
C343
–C
356
.10.1152/ajpcell.00095.2018
4.
Stamatovic
,
S. M.
,
Johnson
,
A. M.
,
Keep
,
R. F.
, and
Andjelkovic
,
A. V.
,
2016
, “
Junctional Proteins of the Blood-Brain Barrier: New Insights Into Function and Dysfunction
,”
Tissue Barriers
,
4
(
1
), p.
e1154641
.10.1080/21688370.2016.1154641
5.
Devraj
,
K.
,
Klinger
,
M. E.
,
Myers
,
R. L.
,
Mokashi
,
A.
,
Hawkins
,
R. A.
, and
Simpson
,
I. A.
,
2011
, “
GLUT-1 Glucose Transporters in the Blood-Brain Barrier: Differential Phosphorylation
,”
J. Neurosci. Res.
,
89
(
12
), pp.
1913
1925
.10.1002/jnr.22738
6.
Sifat
,
A. E.
,
Vaidya
,
B.
, and
Abbruscato
,
T. J.
,
2017
, “
Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke
,”
AAPS J
,
19
(
4
), pp.
957
972
.10.1208/s12248-017-0091-7
7.
Takeda
,
S.
,
Sato
,
N.
, and
Morishita
,
R.
,
2014
, “
Systemic Inflammation, Blood-Brain Barrier Vulnerability and Cognitive/Non-Cognitive Symptoms in Alzheimer Disease: Relevance to Pathogenesis and Therapy
,”
Front. Aging Neurosci.
,
6
, p.
171
.10.3389/fnagi.2014.00171
8.
Han
,
L.
, and
Jiang
,
C.
,
2021
, “
Evolution of Blood-Brain Barrier in Brain Diseases and Related Systemic Nanoscale Brain-Targeting Drug Delivery Strategies
,”
Acta Pharm. Sin. B
,
11
(
8
), pp.
2306
2325
.10.1016/j.apsb.2020.11.023
9.
Park
,
J.
,
Aryal
,
M.
,
Vykhodtseva
,
N.
,
Zhang
,
Y. Z.
, and
McDannold
,
N.
,
2017
, “
Evaluation of Permeability, Doxorubicin Delivery, and Drug Retention in a Rat Brain Tumor Model After Ultrasound-Induced Blood-Tumor Barrier Disruption
,”
J. Control Release
,
250
, pp.
77
85
.10.1016/j.jconrel.2016.10.011
10.
Li
,
X.
,
Vemireddy
,
V.
,
Cai
,
Q.
,
Xiong
,
H.
,
Kang
,
P.
,
Li
,
X.
, et al.,
2021
, “
Reversibly Modulating the Blood-Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles
,”
Nano Lett.
,
21
(
22
), pp.
9805
9815
.10.1021/acs.nanolett.1c02996
11.
Santa-Maria
,
A. R.
,
Heymans
,
M.
,
Walter
,
F. R.
,
Culot
,
M.
,
Gosselet
,
F.
,
Deli
,
M. A.
, and
Neuhaus
,
W.
,
2022
, “
Transport Studies Using Blood-Brain Barrier In Vitro Models: A Critical Review and Guidelines.
,”
Handb. Exp. Pharmacol.
,
273
, pp.
187
204
.10.1007/164_2020_394
12.
Bagchi
,
S.
,
Chhibber
,
T.
,
Lahooti
,
B.
,
Verma
,
A.
,
Borse
,
V.
, and
Jayant
,
R. D.
,
2019
, “
In-Vitro Blood-Brain Barrier Models for Drug Screening and Permeation Studies: An Overview
,”
Drug Des., Dev. Ther
,
13
, pp.
3591
3605
.10.2147/DDDT.S218708
13.
Wilhelm
,
I.
, and
Krizbai
,
I. A.
,
2014
, “
In Vitro Models of the Blood-Brain Barrier for the Study of Drug Delivery to the Brain
,”
Mol. Pharm.
,
11
(
7
), pp.
1949
1963
.10.1021/mp500046f
14.
Hawkins
,
B. T.
, and
Egleton
,
R. D.
,
2008
, “
Pathophysiology of the Blood-Brain Barrier: Animal Models and Methods
,”
Curr. Top Dev. Biol.
,
80
, pp.
277
309
.10.1016/S0070-2153(07)80007-X
15.
Hawkins
,
B. T.
, and
Davis
,
T. P.
,
2005
, “
The Blood-Brain Barrier/Neurovascular Unit in Health and Disease
,”
Pharmacol. Rev.
,
57
(
2
), pp.
173
185
.10.1124/pr.57.2.4
16.
Muoio
,
V.
,
Persson
,
P. B.
, and
Sendeski
,
M. M.
,
2014
, “
The Neurovascular Unit - Concept Review
,”
Acta Physiol. (Oxf)
,
210
(
4
), pp.
790
798
.10.1111/apha.12250
17.
Guo
,
R.
,
Sakamoto
,
H.
,
Sugiura
,
S.
, and
Ogawa
,
M.
,
2007
, “
Endothelial Cell Motility is Compatible With Junctional Integrity
,”
J. Cell Physiol.
,
211
(
2
), pp.
327
335
.10.1002/jcp.20937
18.
Schneeberger
,
E. E.
, and
Lynch
,
R. D.
,
2004
, “
The Tight Junction: A Multifunctional Complex
,”
Am. J. Physiol. Cell Physiol.
,
286
(
6
), pp.
C1213
C1228
.10.1152/ajpcell.00558.2003
19.
Fischer
,
H.
,
Gottschlich
,
R.
, and
Seelig
,
A.
,
1998
, “
Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion
,”
J. Membr. Biol.
,
165
(
3
), pp.
201
211
.10.1007/s002329900434
20.
Pardridge
,
W. M.
,
2002
, “
CNS Drug Design Based on Principles of Blood-Brain Barrier Transport
,”
J. Neurochem.
,
70
(
5
), pp.
1781
1792
.10.1046/j.1471-4159.1998.70051781.x
21.
Keaney
,
J.
,
Walsh
,
D. M.
,
O'Malley
,
T.
,
Hudson
,
N.
,
Crosbie
,
D. E.
,
Loftus
,
T.
,
Sheehan
,
F.
, et al.,
2015
, “
Autoregulated Paracellular Clearance of Amyloid-β Across the Blood-Brain Barrier
,”
Sci. Adv.
,
1
(
8
), p.
e1500472
.10.1126/sciadv.1500472
22.
Knowland
,
D.
,
Arac
,
A.
,
Sekiguchi
,
K. J.
,
Hsu
,
M.
,
Lutz
,
S. E.
,
Perrino
,
J.
,
Steinberg
,
G. K.
, et al.,
2014
, “
Stepwise Recruitment of Transcellular and Paracellular Pathways Underlies Blood-Brain Barrier Breakdown in Stroke
,”
Neuron
,
82
(
3
), pp.
603
617
.10.1016/j.neuron.2014.03.003
23.
Pulgar
,
V. M.
,
2019
, “
Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges
,”
Front. Neurosci.
,
12
, p.
1019
.10.3389/fnins.2018.01019
24.
Pardridge
,
W. M.
,
2015
, “
Blood-Brain Barrier Endogenous Transporters as Therapeutic Targets: A New Model for Small Molecule CNS Drug Discovery
,”
Expert Opin. Ther. Targets
,
19
(
8
), pp.
1059
1072
.10.1517/14728222.2015.1042364
25.
Hervé
,
F.
,
Ghinea
,
N.
, and
Scherrmann
,
J. M.
,
2008
, “
CNS Delivery Via Adsorptive Transcytosis
,”
AAPS J.
,
10
(
3
), pp.
455
472
.10.1208/s12248-008-9055-2
26.
Pandit
,
R.
,
Chen
,
L.
, and
Götz
,
J.
,
2020
, “
The Blood-Brain Barrier: Physiology and Strategies for Drug Delivery
,”
Adv. Drug Deliv. Rev.
,
165–166
, pp.
1
14
.10.1016/j.addr.2019.11.009
27.
Sweeney
,
M. D.
,
Zhao
,
Z.
,
Montagne
,
A.
,
Nelson
,
A. R.
, and
Zlokovic
,
B. V.
,
2019
, “
Blood-Brain Barrier: From Physiology to Disease and Back
,”
Physiol. Rev.
,
99
(
1
), pp.
21
78
.10.1152/physrev.00050.2017
28.
Liu
,
X.
,
Tu
,
M.
,
Kelly
,
R. S.
,
Chen
,
C.
, and
Smith
,
B. J.
,
2004
, “
Development of a Computational Approach to Predict Blood-Brain Barrier Permeability
,”
Drug Metab. Dispos.
,
32
(
1
), pp.
132
139
.10.1124/dmd.32.1.132
29.
Pauletti
,
G. M.
,
Gangwar
,
S.
,
Knipp
,
G. T.
,
Nerurkar
,
M. M.
,
Okumu
,
F. W.
,
Tamura
,
K.
,
Siahaan
,
T. J.
, and
Borchardt
,
R. T.
,
1996
, “
Structural Requirements for Intestinal Absorption of Peptide Drugs
,”
J. Controlled Release
,
41
(
1–2
), pp.
3
17
.10.1016/0168-3659(96)01352-1
30.
Laksitorini
,
M.
,
Prasasty
,
V. D.
,
Kiptoo
,
P. K.
, and
Siahaan
,
T. J.
,
2014
, “
Pathways and Progress in Improving Drug Delivery Through the Intestinal Mucosa and Blood-Brain Barriers
,”
Ther. Deliv.
,
5
(
10
), pp.
1143
1163
.10.4155/tde.14.67
31.
Jaehde
,
U.
,
Masereeuw
,
R.
,
De Boer
,
A. G.
,
Fricker
,
G.
,
Nagelkerke
,
J. F.
,
Vonderscher
,
J.
, and
Breimer
,
D. D.
,
1994
, “
Quantification and Visualization of the Transport of Octreotide, a Somatostatin Analogue, Across Monolayers of Cerebrovascular Endothelial Cells
,”
Pharm. Res.
,
11
(
3
), pp.
442
448
.10.1023/A:1018929508018
32.
Pardridge
,
W. M.
,
2005
, “
Drug and Gene Targeting to the Brain Via Blood–Brain Barrier Receptor-Mediated Transport Systems
,”
Int. Congr. Ser.
,
1277
, pp.
49
62
.10.1016/j.ics.2005.02.011
33.
Ponka
,
P.
, and
Lok
,
C. N.
,
1999
, “
The Transferrin Receptor: Role in Health and Disease
,”
Int. J. Biochem. Cell Biol.
,
31
(
10
), pp.
1111
1137
.10.1016/S1357-2725(99)00070-9
34.
Pardridge
,
W. M.
,
Boado
,
R. J.
, and
Farrell
,
C. R.
,
1990
, “
Brain-Type Glucose Transporter (GLUT-1) is Selectively Localized to the Blood-Brain Barrier. Studies With Quantitative Western Blotting and in Situ Hybridization.
,”
J. Biol. Chem.
,
265
(
29
), pp.
18035
18040
.10.1016/S0021-9258(18)38267-X
35.
Ohtsuki
,
S.
,
Hori
,
S.
, and
Terasaki
,
T.
,
2003
, “
[Molecular Mechanisms of Drug Influx and Efflux Transport at the Blood-Brain Barrier]
,”
Nihon Yakurigaku Zasshi
,
122
(
1
), pp.
55
64
.10.1254/fpj.122.55
36.
Martin
,
I.
,
2004
, “
Prediction of Blood-Brain Barrier Penetration: Are we Missing the Point?
,”
Drug Discov. Today
,
9
(
4
), pp.
161
162
.10.1016/S1359-6446(03)02961-1
37.
Crone
,
C.
,
1963
, “
The Permeability of Capillaries in Various Organs as Determined by Use of the ‘Indicator Diffusion’ Method
,”
Acta Physiol. Scand.
,
58
(
4
), pp.
292
305
.10.1111/j.1748-1716.1963.tb02652.x
38.
Renkin
,
E. M.
,
1952
, “
Capillary Permeability to Lipid-Soluble Molecules
,”
Am. J. Physiol.-Legacy Content
,
168
(
2
), pp.
538
545
.10.1152/ajplegacy.1952.168.2.538
39.
Pardridge
,
W. M.
,
Connor
,
J. D.
,
Crawford
,
I. L.
, and
Oldendorf
,
W. H.
,
1975
, “
Permeability Changes in the Blood-Brain Barrier: Causes and Consequences
,”
CRC Crit. Rev. Toxicol.
,
3
(
2
), pp.
159
199
.10.3109/10408447509079857
40.
Sprowls
,
S. A.
,
Saralkar
,
P.
,
Arsiwala
,
T.
,
Adkins
,
C. E.
,
Blethen
,
K. E.
,
Pizzuti
,
V. J.
,
Shah
,
N.
, et al.,
2021
, “
A Review of Mathematics Determining Solute Uptake at the Blood-Brain Barrier in Normal and Pathological Conditions
,”
Pharmaceutics
,
13
(
5
), p.
756
.10.3390/pharmaceutics13050756
41.
Pardridge
,
W. M.
,
2016
, “
CSF, Blood-Brain Barrier, and Brain Drug Delivery
,”
Expert Opin. Drug Deliv.
,
13
(
7
), pp.
963
975
.10.1517/17425247.2016.1171315
42.
Hitchcock
,
S. A.
,
2008
, “
Blood-Brain Barrier Permeability Considerations for CNS-Targeted Compound Library Design
,”
Curr. Opin. Chem. Biol.
,
12
(
3
), pp.
318
323
.10.1016/j.cbpa.2008.03.019
43.
Takasato
,
Y.
,
Rapoport
,
S. I.
, and
Smith
,
Q. R.
,
1984
, “
An in Situ Brain Perfusion Technique to Study Cerebrovascular Transport in the Rat
,”
Am. J. Physiol.
,
247
(
3
), pp.
H484
H493
.10.1152/ajpheart.1984.247.3.H484
44.
Geldenhuys
,
W. J.
,
Mohammad
,
A. S.
,
Adkins
,
C. E.
, and
Lockman
,
P. R.
,
2015
, “
Molecular Determinants of Blood-Brain Barrier Permeation
,”
Ther. Deliv.
,
6
(
8
), pp.
961
971
.10.4155/tde.15.32
45.
Sven
,
K.
, and
Josipa
,
F.
,
2007
, “
Interstitial Hydrostatic Pressure: A Manual for Students
,”
Adv. Physiol. Educ.
,
31
(
1
), pp.
116
117
.10.1152/advan.00084.2006
46.
Lundsgaard-Hansen
,
P.
,
1986
, “
Physiology and Pathophysiology of Colloid Osmotic Pressure and Albumin Metabolism.
,”
Curr. Stud. Hematol. Blood Transfus.
, 53, pp.
1
17
.10.1159/000413159
47.
Linninger
,
A. A.
,
Xu
,
C.
,
Tangen
,
K.
, and
Hartung
,
G.
,
2017
, “
Starling Forces Drive Intracranial Water Exchange During Normal and Pathological States
,”
Croat Med. J.
,
58
(
6
), pp.
384
394
.10.3325/cmj.2017.58.384
48.
Grinberg
,
O.
,
Novozhilov
,
B.
,
Grinberg
,
S.
,
Friedman
,
B.
, and
Swartz
,
H. M.
,
2005
, “
Axial Oxygen Diffusion in the Krogh Model: Modifications to Account for Myocardial Oxygen Tension in Isolated Perfused Rat Hearts Measured by EPR Oximetry.
,”
Adv. Exp. Med. Biol.
,
566
, pp.
127
34
.10.1007/b137055
49.
Calvetti
,
D.
,
Cheng
,
Y.
, and
Somersalo
,
E.
,
2015
, “
A Spatially Distributed Computational Model of Brain Cellular Metabolism
,”
J. Theor. Biol.
,
376
, pp.
48
65
.10.1016/j.jtbi.2015.03.037
50.
Secomb
,
T. W.
,
2015
, “
Krogh-Cylinder and Infinite-Domain Models for Washout of an Inert Diffusible Solute From Tissue
,”
Microcirculation
,
22
(
1
), pp.
91
98
.10.1111/micc.12180
51.
Sarafraz
,
M.
,
Nakhjavani
,
M.
,
Shigdar
,
S.
,
Christo
,
F. C.
, and
Rolfe
,
B.
,
2022
, “
Modelling of Mass Transport and Distribution of Aptamer in Blood-Brain Barrier for Tumour Therapy and Cancer Treatment
,”
Eur. J. Pharm. Biopharm.
,
173
, pp.
121
131
.10.1016/j.ejpb.2022.03.004
52.
Stylianopoulos
,
T.
,
Soteriou
,
K.
,
Fukumura
,
D.
, and
Jain
,
R. K.
,
2013
, “
Cationic Nanoparticles Have Superior Transvascular Flux Into Solid Tumors: Insights From a Mathematical Model
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
68
77
.10.1007/s10439-012-0630-4
53.
Langhoff
,
W.
,
Riggs
,
A.
, and
Hinow
,
P.
,
2018
, “
Scaling Behavior of Drug Transport and Absorption in in Silico Cerebral Capillary Networks
,”
PLoS One
,
13
(
7
), p.
e0200266
.10.1371/journal.pone.0200266
54.
Gould
,
I. G.
,
Tsai
,
P.
,
Kleinfeld
,
D.
, and
Linninger
,
A.
,
2017
, “
The Capillary Bed Offers the Largest Hemodynamic Resistance to the Cortical Blood Supply
,”
J. Cereb. Blood Flow Metab.
,
37
(
1
), pp.
52
68
.10.1177/0271678X16671146
55.
Baish
,
J. W.
,
Gazit
,
Y.
,
Berk
,
D. A.
,
Nozue
,
M.
,
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1996
, “
Role of Tumor Vascular Architecture in Nutrient and Drug Delivery: An Invasion Percolation-Based Network Model
,”
Microvascular Res.
,
51
(
3
), pp.
327
346
.10.1006/mvre.1996.0031
56.
Gazit
,
Y.
,
Berk
,
D. A.
,
Leunig
,
M.
,
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1995
, “
Scale-Invariant Behavior and Vascular Network Formation in Normal and Tumor Tissue
,”
Phys. Rev. Lett.
,
75
(
12
), pp.
2428
2431
.10.1103/PhysRevLett.75.2428
57.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1990
, “
Transport of Fluid and Macromolecules in Tumors. II. Role of Heterogeneous Perfusion and Lymphatics
,”
Microvasc. Res.
,
40
(
2
), pp.
246
263
.10.1016/0026-2862(90)90023-K
58.
Stylianopoulos
,
T.
, and
Jain
,
R. K.
,
2013
, “
Combining Two Strategies to Improve Perfusion and Drug Delivery in Solid Tumors
,”
Proc. Natl. Acad. Sci. U S A
,
110
(
46
), pp.
18632
18637
.10.1073/pnas.1318415110
59.
Vendel
,
E.
,
Rottschäfer
,
V.
, and
de Lange
,
E. C. M.
,
2020
, “
A 3D Brain Unit Model to Further Improve Prediction of Local Drug Distribution Within the Brain
,”
PLoS One
,
15
(
9
), p.
e0238397
.10.1371/journal.pone.0238397
60.
Boujelben
,
A.
,
Watson
,
M.
,
McDougall
,
S.
,
Yen
,
Y. F.
,
Gerstner
,
E. R.
,
Catana
,
C.
,
Deisboeck
,
T.
,
Batchelor
,
T. T.
,
Boas
,
D.
,
Rosen
,
B.
,
Kalpathy-Cramer
,
J.
, and
Chaplain
,
M. A.
,
2016
, “
Multimodality Imaging and Mathematical Modelling of Drug Delivery to Glioblastomas
,”
Interface Focus
,
6
(
5
), p.
20160039
.10.1098/rsfs.2016.0039
61.
Alata
,
W.
,
Paris-Robidas
,
S.
,
Emond
,
V.
,
Bourasset
,
F.
, and
Calon
,
F.
,
2014
, “
Brain Uptake of a Fluorescent Vector Targeting the Transferrin Receptor: A Novel Application of In Situ Brain Perfusion
,”
Mol. Pharm.
,
11
(
1
), pp.
243
253
.10.1021/mp400421a
62.
Sommariva
,
S.
,
Caviglia
,
G.
,
Sambuceti
,
G.
, and
Piana
,
M.
,
2021
, “
Mathematical Models for FDG Kinetics in Cancer: A Review
,”
Metabolites
,
11
(
8
), p.
519
.10.3390/metabo11080519
63.
Wong
,
A. D.
,
Ye
,
M.
,
Levy
,
A. F.
,
Rothstein
,
J. D.
,
Bergles
,
D. E.
, and
Searson
,
P. C.
,
2013
, “
The Blood-Brain Barrier: An Engineering Perspective
,”
Front. Neuroeng.
,
6
, p.
7
.10.3389/fneng.2013.00007
64.
Cannon
,
R. E.
,
Peart
,
J. C.
,
Hawkins
,
B. T.
,
Campos
,
C. R.
, and
Miller
,
D. S.
,
2012
, “
Targeting Blood-Brain Barrier Sphingolipid Signaling Reduces Basal P-Glycoprotein Activity and Improves Drug Delivery to the Brain
,”
Proc. Natl. Acad. Sci. U S A
,
109
(
39
), pp.
15930
15935
.10.1073/pnas.1203534109
65.
Chowdhury
,
E. A.
,
Alqahtani
,
F.
,
Bhattacharya
,
R.
,
Mehvar
,
R.
, and
Bickel
,
U.
,
2018
, “
Simultaneous UPLC-MS/MS Analysis of Two Stable Isotope Labeled Versions of Sucrose in Mouse Plasma and Brain Samples as Markers of Blood-Brain Barrier Permeability and Brain Vascular Space
,”
J. Chromatogr. B. Anal. Technol. Biomed. Life Sci.
,
1073
, pp.
19
26
.10.1016/j.jchromb.2017.12.007
66.
Miah
,
M. K.
,
Bickel
,
U.
, and
Mehvar
,
R.
,
2016
, “
Development and Validation of a Sensitive UPLC-MS/MS Method for the Quantitation of [(13)C]Sucrose in Rat Plasma, Blood, and Brain: Its Application to the Measurement of Blood-Brain Barrier Permeability
,”
J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
,
1015–1016
, pp.
105
110
.10.1016/j.jchromb.2016.02.017
67.
Patlak
,
C. S.
, and
Blasberg
,
R. G.
,
1985
, “
Graphical Evaluation of Blood-to-Brain Transfer Constants From Multiple-Time Uptake Data. Generalizations
,”
J. Cereb. Blood Flow Metab.
,
5
(
4
), pp.
584
590
.10.1038/jcbfm.1985.87
68.
Lin
,
E.
, and
Alessio
,
A.
,
2009
, “
What Are the Basic Concepts of Temporal, Contrast, and Spatial Resolution in Cardiac CT?
,”
J. Cardiovasc. Comput. Tomogr.
,
3
(
6
), pp.
403
408
.10.1016/j.jcct.2009.07.003
69.
Lu
,
F. M.
, and
Yuan
,
Z.
,
2015
, “
PET/SPECT Molecular Imaging in Clinical Neuroscience: Recent Advances in the Investigation of CNS Diseases
,”
Quant. Imaging Med. Surg.
,
5
(
3
), pp.
433
47
.10.3978/j.issn.2223-4292.2015.03.16
70.
Hoover
,
E. E.
, and
Squier
,
J. A.
,
2013
, “
Advances in Multiphoton Microscopy Technology
,”
Nat. Photonics
,
7
(
2
), pp.
93
101
.10.1038/nphoton.2012.361
71.
Pike
,
V. W.
,
2009
, “
PET Radiotracers: Crossing the Blood-Brain Barrier and Surviving Metabolism
,”
Trends Pharmacol Sci.
,
30
(
8
), pp.
431
440
.10.1016/j.tips.2009.05.005
72.
Tournier
,
N.
,
Goutal
,
S.
,
Mairinger
,
S.
,
Hernández-Lozano
,
I.
,
Filip
,
T.
,
Sauberer
,
M.
,
Caillé
,
F.
, et al.,
2021
, “
Complete Inhibition of ABCB1 and ABCG2 at the Blood-Brain Barrier by co-Infusion of Erlotinib and Tariquidar to Improve Brain Delivery of the Model ABCB1/ABCG2 Substrate [(11)C]Erlotinib
,”
J. Cereb. Blood Flow Metab.
,
41
(
7
), pp.
1634
1646
.10.1177/0271678X20965500
73.
Gustavsson
,
T.
,
Syvänen
,
S.
,
O'Callaghan
,
P.
, and
Sehlin
,
D.
,
2020
, “
SPECT Imaging of Distribution and Retention of a Brain-Penetrating Bispecific Amyloid-β Antibody in a Mouse Model of Alzheimer's Disease.
,”
Transl. Neurodegener.
,
9
(
1
), p.
37
.10.1186/s40035-020-00214-1
74.
Kinoshita
,
M.
,
McDannold
,
N.
,
Jolesz
,
F. A.
, and
Hynynen
,
K.
,
2006
, “
Noninvasive Localized Delivery of Herceptin to the Mouse Brain by MRI-Guided Focused Ultrasound-Induced Blood–Brain Barrier Disruption
,”
Proc. Natl. Acad. Sci.
,
103
(
31
), pp.
11719
11723
.10.1073/pnas.0604318103
75.
Kucharz
,
K.
,
Kristensen
,
K.
,
Johnsen
,
K. B.
,
Lund
,
M. A.
,
Lønstrup
,
M.
,
Moos
,
T.
,
Andresen
,
T. L.
, and
Lauritzen
,
M. J.
,
2021
, “
Post-Capillary Venules Are the Key Locus for Transcytosis-Mediated Brain Delivery of Therapeutic Nanoparticles
,”
Nat. Commun.
,
12
(
1
), p.
4121
.10.1038/s41467-021-24323-1
76.
Strijckmans
,
K.
,
2001
, “
The Isochronous Cyclotron: Principles and Recent Developments
,”
Comput. Med. Imaging Graph
,
25
(
2
), pp.
69
78
.10.1016/S0895-6111(00)00056-2
77.
Kovacs
,
Z. I.
,
Kim
,
S.
,
Jikaria
,
N.
,
Qureshi
,
F.
,
Milo
,
B.
,
Lewis
,
B. K.
,
Bresler
,
M.
,
Burks
,
S. R.
, and
Frank
,
J. A.
,
2017
, “
Disrupting the Blood-Brain Barrier by Focused Ultrasound Induces Sterile Inflammation
,”
Proc. Natl. Acad. Sci. U S A
,
114
(
1
), pp.
E75
E84
.10.1073/pnas.1614777114
78.
Dong
,
C.
,
Ly
,
C.
,
Dunlap
,
L. E.
,
Vargas
,
M. V.
,
Sun
,
J.
,
Hwang
,
I. W.
,
Azinfar
,
A.
,
Oh
,
W. C.
,
Wetsel
,
W. C.
,
Olson
,
D. E.
, and
Tian
,
L.
,
2021
, “
Psychedelic-Inspired Drug Discovery Using an Engineered Biosensor
,”
Cell
,
184
(
10
), pp.
2779
2792.
10.1016/j.cell.2021.03.043
79.
Wei
,
W.
, and
Qiu
,
Z.
,
2022
, “
Diagnostics and Theranostics of Central Nervous System Diseases Based on Aggregation-Induced Emission Luminogens
,”
Biosens. Bioelectron.
,
217
, p.
114670
.10.1016/j.bios.2022.114670
You do not currently have access to this content.