Abstract

Dynamic biplane radiographic (DBR) imaging measures continuous vertebral motion during in vivo, functional tasks with submillimeter accuracy, offering the potential to develop novel biomechanical markers for lower back disorders based on true dynamic motion rather than metrics based on static end-range of motion. Nevertheless, the reliability of DBR metrics is unclear due to the inherent variability in movement over multiple repetitions and a need to minimize radiation exposure associated with each movement repetition. The objectives of this study were to determine the margin of uncertainty (MOU) in estimating the typical intervertebral kinematics waveforms based upon only a small number of movement repetitions, and to determine the day-to-day repeatability of intervertebral kinematics waveforms measured using DBR. Lumbar spine kinematics data were collected from two participant groups who performed multiple trials of flexion–extension or lateral bending to assess the uncertainty in the mean estimated waveform. The first group performed ten repetitions on the same day. Data from that group were used to estimate MOU as a function of the number of repetitions. The second group performed five repetitions on each of two separate days. MOU was not only movement-specific, but also motion segment-specific. Using just one or two trials yielded a relatively high MOU (e.g., >4 deg or 4 mm), however, collecting at least three repetitions reduced the MOU by 40% or more. Results demonstrate the reproducibility of DBR-derived measurements is greatly improved by collecting at least three repetitions, while simultaneously minimizing the amount of radiation exposure to participants.

References

1.
James
,
S. L.
,
Abate
,
D.
,
Abate
,
K. H.
,
Abay
,
S. M.
,
Abbafati
,
C.
,
Abbasi
,
N.
,
Abbastabar
,
H.
, et al.,
2018
, “
Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017
,”
Lancet
,
392
(
10159
), pp.
1789
1858
.10.1016/S0140-6736(18)32279-7
2.
Adams
,
M.
,
Bogduk
,
B.
,
Burton
,
K.
, and
Dolan
,
P.
,
2006
,
The Biomechanics of Back Pain
,
Churchill Livingstone
,
New York
.
3.
Allegri
,
M.
,
Montella
,
S.
,
Salici
,
F.
,
Valente
,
A.
,
Marchesini
,
M.
,
Compagnone
,
C.
,
Baciarello
,
M.
, et al.,
2016
, “
Mechanisms of Low Back Pain: A Guide for Diagnosis and Therapy
,”
F1000Res.
,
5
(
F1000 Faculty Rev
), p.
1530
.10.12688/f1000research.8105.2
4.
Anderson
,
D. G.
,
Limthongkul
,
W.
,
Sayadipour
,
A.
,
Kepler
,
C. K.
,
Harrop
,
J. S.
,
Maltenfort
,
M.
,
Vaccaro
,
A. R.
, et al.,
2012
, “
A Radiographic Analysis of Degenerative Spondylolisthesis at the L4-5 Level
,”
J. Neurosurg. Spine
,
16
(
2
), pp.
130
134
.10.3171/2011.10.SPINE11140
5.
Cabraja
,
M.
,
Mohamed
,
E.
,
Koeppen
,
D.
, and
Kroppenstedt
,
S.
,
2012
, “
The Analysis of Segmental Mobility With Different Lumbar Radiographs in Symptomatic Patients With a Spondylolisthesis
,”
Eur. Spine J.
,
21
(
2
), pp.
256
261
.10.1007/s00586-011-1870-y
6.
Matz
,
P. G.
,
Meagher
,
R. J.
,
Lamer
,
T.
,
Tontz
,
W. L.
, Jr
,
Annaswamy
,
T. M.
,
Cassidy
,
R. C.
,
Cho
,
C. H.
, et al.,
2016
, “
Guideline Summary Review: An Evidence-Based Clinical Guideline for the Diagnosis and Treatment of Degenerative Lumbar Spondylolisthesis
,”
Spine J.
,
16
(
3
), pp.
439
448
.10.1016/j.spinee.2015.11.055
7.
Sigmundsson
,
F. G.
,
Jönsson
,
B.
, and
Strömqvist
,
B.
,
2015
, “
Outcome of Decompression With and Without Fusion in Spinal Stenosis With Degenerative Spondylolisthesis in Relation to Preoperative Pain Pattern: A Register Study of 1,624 Patients
,”
Spine J.
,
15
(
4
), pp.
638
646
.10.1016/j.spinee.2014.11.020
8.
Ulrich
,
N. H.
,
Gravestock
,
I.
,
Held
,
U.
,
Schawkat
,
K.
,
Pichierri
,
G.
,
Wertli
,
M. M.
,
Winklhofer
,
H.
, et al.,
2018
, “
Does Preoperative Degenerative Spondylolisthesis Influence Outcome in Degenerative Lumbar Spinal Stenosis? Three-Year Results of a Swiss Prospective Multicenter Cohort Study
,”
World Neurosurg.
,
114
, pp.
e1275
e1283
.10.1016/j.wneu.2018.03.196
9.
Pearcy
,
M.
,
Portek
,
I. A. N.
, and
Shepherd
,
J.
,
1984
, “
Three-Dimensional x-Ray Analysis of Normal Movement in the Lumbar Spine
,”
Spine
,
9
(
3
), pp.
294
297
.10.1097/00007632-198404000-00013
10.
Li
,
G.
,
Wang
,
S.
,
Passias
,
P.
,
Xia
,
Q.
,
Li
,
G.
, and
Wood
,
K.
,
2009
, “
Segmental In Vivo Vertebral Motion During Functional Human Lumbar Spine Activities
,”
Eur. Spine J.
,
18
(
7
), pp.
1013
1021
.10.1007/s00586-009-0936-6
11.
Xia
,
Q.
,
Wang
,
S.
,
Kozanek
,
M.
,
Passias
,
P.
,
Wood
,
K.
, and
Li
,
G.
,
2010
, “
In-Vivo Motion Characteristics of Lumbar Vertebrae in Sagittal and Transverse Planes
,”
J. Biomech.
,
43
(
10
), pp.
1905
1909
.10.1016/j.jbiomech.2010.03.023
12.
Passias
,
P. G.
,
Wang
,
S.
,
Kozanek
,
M.
,
Xia
,
Q.
,
Li
,
W.
,
Grottkau
,
B.
,
Wood
,
K. B.
, and
Li
,
G.
,
2011
, “
Segmental Lumbar Rotation in Patients With Discogenic Low Back Pain During Functional Weight-Bearing Activities
,”
J. Bone Jt. Surg. Am.
,
93
(
1
), p.
29
.10.2106/JBJS.I.01348
13.
Ahmadi
,
A.
,
Maroufi
,
N.
,
Behtash
,
H.
,
Zekavat
,
H.
, and
Parnianpour
,
M.
,
2009
, “
Kinematic Analysis of Dynamic Lumbar Motion in Patients With Lumbar Segmental Instability Using Digital Videofluoroscopy
,”
Eur. Spine J.
,
18
(
11
), pp.
1677
1685
.10.1007/s00586-009-1147-x
14.
Dombrowski
,
M. E.
,
Rynearson
,
B.
,
LeVasseur
,
C.
,
Adgate
,
Z.
,
Donaldson
,
W. F.
,
Lee
,
J. Y.
,
Aiyangar
,
A.
, and
Anderst
,
W. J.
,
2018
, “
ISSLS PRIZE IN BIOENGINEERING SCIENCE 2018: Dynamic Imaging of Degenerative Spondylolisthesis Reveals Mid-Range Dynamic Lumbar Instability Not Evident on Static Clinical Radiographs
,”
Eur. Spine J.
,
27
(
4
), pp.
752
762
.10.1007/s00586-018-5489-0
15.
Wong
,
K. W.
,
Luk
,
K. D.
,
Leong
,
J. C.
,
Wong
,
S. F.
, and
Wong
,
K. K.
,
2006
, “
Continuous Dynamic Spinal Motion Analysis
,”
Spine (Phila Pa 1976)
,
31
(
4
), pp.
414
419
.10.1097/01.brs.0000199955.87517.82
16.
Teyhen
,
D. S.
,
Flynn
,
T. W.
,
Childs
,
J. D.
,
Kuklo
,
T. R.
,
Rosner
,
M. K.
,
Polly
,
D. W.
, and
Abraham
,
L. D.
,
2007
, “
Fluoroscopic Video to Identify Aberrant Lumbar Motion
,”
Spine (Phila Pa 1976)
,
32
(
7
), pp.
E220
229
.10.1097/01.brs.0000259206.38946.cb
17.
Anderst
,
W. J.
,
Vaidya
,
R.
, and
Tashman
,
S.
,
2008
, “
A Technique to Measure Three-Dimensional In Vivo Rotation of Fused and Adjacent Lumbar Vertebrae
,”
Spine J.: Off. J. North Am. Spine Soc.
,
8
(
6
), pp.
991
997
.10.1016/j.spinee.2007.07.390
18.
Aiyangar
,
A.
,
Zheng
,
L.
,
Tashman
,
S.
,
Anderst
,
W.
, and
Zhang
,
X.
,
2014
, “
Capturing Three-Dimensional In Vivo Lumbar Intervertebral Joint Kinematics Using Dynamic stereo-X-Ray Imaging
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011004
.10.1115/1.4025793
19.
Breen
,
A.
,
De Carvalho
,
D.
,
Funabashi
,
M.
,
Kawchuk
,
G.
,
Pagé
,
I.
,
Wong
,
A. Y.
, and
Breen
,
A.
,
2021
, “
A Reference Database of Standardised Continuous Lumbar Intervertebral Motion Analysis for Conducting Patient-Specific Comparisons
,”
Front. Bioeng. Biotechnol.
,
863
, pp.
1
12
.10.3389/fbioe.2021.745837
20.
Aiyangar
,
A.
,
Zheng
,
L.
,
Anderst
,
W.
, and
Zhang
,
X.
,
2015
, “
Apportionment of Lumbar L2-S1 Rotation Across Individual Motion Segments During a Dynamic Lifting Task
,”
J. Biomech.
,
48
(
13
), pp.
3718
3724
.10.1016/j.jbiomech.2015.08.022
21.
Aiyangar
,
A.
,
Zheng
,
L.
,
Anderst
,
W.
, and
Zhang
,
X.
,
2017
, “
Instantaneous Centers of Rotation for Lumbar Segmental Extension In Vivo
,”
J. Biomech.
,
52
, pp.
113
121
.10.1016/j.jbiomech.2016.12.021
22.
Byrne
,
R. M.
,
Zhou
,
Y.
,
Zheng
,
L.
,
Chowdhury
,
S. K.
,
Aiyangar
,
A.
, and
Zhang
,
X.
,
2018
, “
Segmental Variations in Facet Joint Translations During In Vivo Lumbar Extension
,”
J. Biomech.
,
70
, pp.
88
95
.10.1016/j.jbiomech.2017.09.026
23.
Byrne
,
R. M.
,
Aiyangar
,
A. K.
, and
Zhang
,
X.
,
2019
, “
A Dynamic Radiographic Imaging Study of Lumbar Intervertebral Disc Morphometry and Deformation In Vivo
,”
Sci. Rep.
,
9
(
1
), p.
15490
.10.1038/s41598-019-51871-w
24.
Wawrose
,
R. A.
,
LeVasseur
,
C. M.
,
Byrapogu
,
V. K.
,
Dombrowski
,
M. E.
,
Donaldson
,
W. F.
,
Shaw
,
J. D.
,
Lee
,
J. Y.
, et al.,
2019
, “
In Vivo Changes in Adjacent Segment Kinematics After Lumbar Decompression and Fusion
,”
J. Biomech.
, 102, p.
109515
.10.1016/j.jbiomech.2019.109515
25.
Lenhoff
,
M. W.
,
Santner
,
T. J.
,
Otis
,
J. C.
,
Peterson
,
M. G.
,
Williams
,
B. J.
, and
Backus
,
S. I.
,
1999
, “
Bootstrap Prediction and Confidence Bands: A Superior Statistical Method for Analysis of Gait Data
,”
Gait Posture
,
9
(
1
), pp.
10
17
.10.1016/S0966-6362(98)00043-5
26.
Pataky
,
T. C.
,
2010
, “
Generalized n-Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
,”
J. Biomech.
,
43
(
10
), pp.
1976
1982
.10.1016/j.jbiomech.2010.03.008
27.
Helwig
,
N. E.
,
Shorter
,
K. A.
,
Ma
,
P.
, and
Hsiao-Wecksler
,
E. T.
,
2016
, “
Smoothing Spline Analysis of Variance Models: A New Tool for the Analysis of Cyclic Biomechanical Data
,”
J. Biomech.
,
49
(
14
), pp.
3216
3222
.10.1016/j.jbiomech.2016.07.035
28.
Stergiou
,
N.
,
Harbourne
,
R. T.
, and
Cavanaugh
,
J. T.
,
2006
, “
Optimal Movement Variability: A New Theoretical Perspective for Neurologic Physical Therapy
,”
J. Neurol. Phys. Ther.
,
30
(
3
), pp.
120
129
.10.1097/01.NPT.0000281949.48193.d9
29.
Saito
,
H.
,
Watanabe
,
Y.
,
Kutsuna
,
T.
,
Futohashi
,
T.
,
Kusumoto
,
Y.
,
Chiba
,
H.
,
Kubo
,
M.
, and
Takasaki
,
H.
,
2021
, “
Spinal Movement Variability Associated With Low Back Pain: A Scoping Review
,”
PLos One
,
16
(
5
), p.
e0252141
.10.1371/journal.pone.0252141
30.
Hughes
,
J.
,
Pratt
,
L.
,
Linge
,
K.
,
Clark
,
P.
, and
Klenerman
,
L.
,
1991
, “
Reliability of Pressure Measurements: The EM ED F System
,”
Clin. Biomech.
,
6
(
1
), pp.
14
18
.10.1016/0268-0033(91)90036-P
31.
Breen
,
A.
,
Hemming
,
R.
,
Mellor
,
F.
, and
Breen
,
A.
,
2019
, “
Intra-Subject Repeatability of In Vivo Intervertebral Motion Parameters Using Quantitative Fluoroscopy
,”
Eur. Spine J.
,
28
(
2
), pp.
450
460
.10.1007/s00586-018-5849-9
32.
Degras
,
D.
,
2017
, “
Simultaneous Confidence Bands for the Mean of Functional Data
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
9
(
3
), p.
e1397
.10.1002/wics.1397
33.
Anderst
,
W.
,
Charles
,
S.
,
Zarei
,
M.
,
Mani
,
A.
,
Frankston
,
N.
,
Hammersley
,
E.
,
Zhang
,
G.
, et al.,
2022
, “
Using Simultaneous Confidence Bands to Calculate the Margin of Error in Estimating Typical Biomechanical Waveforms
,”
J. Appl. Biomech.
,
1
, pp.
1
5
.10.1123/jab.2021-0326
34.
Deyo
,
R. A.
,
Dworkin
,
S. F.
,
Amtmann
,
D.
,
Andersson
,
G.
,
Borenstein
,
D.
,
Carragee
,
E.
,
Carrino
,
J.
, et al.,
2014
, “
Report of the NIH Task Force on Research Standards for Chronic Low Back Pain
,”
J. Pain
,
15
(
6
), pp.
569
585
.10.1016/j.jpain.2014.03.005
35.
Anderst
,
W. J.
,
Roger Zauel
,
R.
,
Jennifer Bishop
,
J.
,
Demps
,
E.
, and
Tashman
,
S.
,
2009
, “
Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running
,”
Med. Eng. Phys.
,
31
(
1
), pp.
10
16
.10.1016/j.medengphy.2008.03.003
36.
Banks
,
S.
, and
Hodge
,
W.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
(
6
), pp.
638
649
.10.1109/10.495283
37.
Dennis
,
D.
,
Mahfouz
,
M.
,
Komistek
,
R.
, and
Hoff
,
W.
,
2005
, “
In Vivo Determination of Normal and Anterior Cruciate Ligament-Deficient Knee Kinematics
,”
J. Biomech.
,
38
(
2
), pp.
241
253
.10.1016/j.jbiomech.2004.02.042
38.
Florkow
,
M. C.
,
Willemsen
,
K.
,
Mascarenhas
,
V. V.
,
Oei
,
E. H. G.
,
van Stralen
,
M.
, and
Seevinck
,
P. R.
,
2022
, “
Magnetic Resonance Imaging Versus Computed Tomography for Three-Dimensional Bone Imaging of Musculoskeletal Pathologies: A Review
,”
J. Magn. Reson. Imaging
,
56
(
1
), pp.
11
34
.10.1002/jmri.28067
39.
Akbari-Shandiz
,
M.
,
Lawrence
,
R. L.
,
Ellingson
,
A. M.
,
Johnson
,
C. P.
,
Zhao
,
K. D.
, and
Ludewig
,
P. M.
,
2019
, “
MRI Vs CT-Based 2D-3D Auto-Registration Accuracy for Quantifying Shoulder Motion Using Biplane Video-Radiography
,”
J. Biomech.
,
82
, pp.
375
380
.10.1016/j.jbiomech.2018.09.019
40.
Moro-Oka
,
T. A.
,
Hamai
,
S.
,
Miura
,
H.
,
Shimoto
,
T.
,
Higaki
,
H.
,
Fregly
,
B. J.
,
Iwamoto
,
Y.
, and
Banks
,
S. A.
,
2007
, “
Can Magnetic Resonance Imaging-Derived Bone Models Be Used for Accurate Motion Measurement With Single-Plane Three-Dimensional Shape Registration?
,”
J. Orthop. Res.
,
25
(
7
), pp.
867
72
.10.1002/jor.20355
41.
Shmagel
,
A.
,
Foley
,
R.
, and
Ibrahim
,
H.
,
2016
, “
Epidemiology of Chronic Low Back Pain in U.S. Adults: Data From the 2009–2010 National Health and Nutrition Examination Survey
,”
Arthritis Care Res.
,
68
(
11
), pp.
1688
1694
.10.1002/acr.22890
You do not currently have access to this content.