Abstract

Computational fluid dynamics (CFD) of cerebral venous flows has become popular owing to the possibility of using local hemodynamics and hemoacoustics to help diagnose and plan treatments for venous diseases of the brain. Lumen geometries in low-pressure cerebral veins are different from those in cerebral arteries, often exhibiting fenestrations and flattened or triangular cross section, in addition to constrictions and expansions. These can challenge conventional size-based volume meshing strategies, and the ability to resolve nonlaminar flows. Here we present a novel strategy leveraging estimation of length scales that could be present if flow were to become transitional or turbulent. Starting from the lumen geometry and flow rate boundary conditions, centerlines are used to determine local hydraulic diameters and cross-sectional mean velocities, from which flow length scales are approximated using conventional definitions of local Kolmogorov and Taylor microscales. By inspection of these scales, a user specifies minimum and maximum mesh edge lengths, which are then distributed along the model in proportion to the approximated local Taylor length scales. We demonstrate in three representative cases that this strategy avoids some of the pitfalls of conventional size-based strategies. An exemplary CFD mesh-refinement study shows convergence of high-frequency flow instabilities even starting from relatively coarse edge lengths near the lower bounds of the approximated Taylor length scales. Rational consideration of the length scales in a possibly nonlaminar flow may thus provide a useful and replicable baseline for denovo meshing of complicated or unfamiliar venous lumen geometries.

References

1.
Schaller
,
B.
,
2004
, “
Physiology of Cerebral Venous Blood Flow: From Experimental Data in Animals to Normal Function in Humans
,”
Brain Res Rev
,
46
(
3
), pp.
243
260
.10.1016/j.brainresrev.2004.04.005
2.
Stoquart-ElSankari
,
S.
,
Lehmann
,
P.
,
Villette
,
A.
,
Czosnyka
,
M.
,
Meyer
,
M.-E.
,
Deramond
,
H.
, and
Balédent
,
O.
,
2009
, “
A Phase-Contrast MRI Study of Physiologic Cerebral Venous Flow
,”
J. Cereb. Blood Flow Metab.
,
29
(
6
), pp.
1208
1215
.10.1038/jcbfm.2009.29
3.
Bateman
,
A. R.
,
Bateman
,
G. A.
, and
Barber
,
T.
,
2021
, “
The Relationship Between Cerebral Blood Flow and Venous Sinus Pressure: Can Hyperemia Induce Idiopathic Intracranial Hypertension?
,”
Fluids Barriers CNS
,
18
(
1
), pp.
1
10
.10.1186/s12987-021-00239-2
4.
Hong
,
Z.
,
Liu
,
X.
,
Ding
,
H.
,
Zhao
,
P.
,
Gong
,
S.
,
Wang
,
Z.
,
Ghista
,
D.
, and
Fan
,
J.
,
2022
, “
Flow Patterns in the Venous Sinus of Pulsatile Tinnitus Patients With Transverse Sinus Stenosis and Underlying Vortical Flow as a Causative Factor
,”
Comput. Methods Programs Biomed.
,
227
, p.
107203
.10.1016/j.cmpb.2022.107203
5.
Hsieh
,
Y. L.
,
Gao
,
X.
,
Wang
,
X.
,
Hsiang
,
F. C.
,
Sun
,
X.
, and
Wang
,
W.
,
2021
, “
Therapeutic Validation of Venous Pulsatile Tinnitus and Biomaterial Applications for Temporal Bone Reconstruction Surgery Using Multi-Sensing Platforms and Coupled Computational Techniques
,”
Front. Bioeng. Biotechnol.
,
9
, p.
777648
.10.3389/fbioe.2021.777648
6.
Liu
,
L.
,
Mu
,
Z.
,
Kang
,
Y.
,
Huang
,
S.
,
Qiu
,
X.
,
Xue
,
X.
,
Fu
,
M.
,
Xue
,
Q.
,
Lv
,
H.
,
Gao
,
B.
,
Li
,
S.
,
Zhao
,
P.
,
Ding
,
H.
, and
Wang
,
Z.
,
2022
, “
Hemodynamic Mechanism of Pulsatile Tinnitus Caused by Venous Diverticulum Treated With Coil Embolization
,”
Comput. Methods Programs Biomed.
,
215
, p.
106617
.10.1016/j.cmpb.2022.106617
7.
Mu
,
Z.
,
Li
,
X.
,
Zhao
,
D.
,
Qiu
,
X.
,
Dai
,
C.
,
Meng
,
X.
,
Huang
,
S.
,
Gao
,
B.
,
Lv
,
H.
,
Li
,
S.
,
Zhao
,
P.
,
Liu
,
Y.
,
Wang
,
Z.
, and
Chang
,
Y.
,
2022
, “
Hemodynamics Study on the Relationship Between the Sigmoid Sinus Wall Dehiscence and the Blood Flow Pattern of the Transverse Sinus and Sigmoid Sinus Junction
,”
J. Biomech.
,
135
, p.
111022
.10.1016/j.jbiomech.2022.111022
8.
Pereira
,
V. M.
,
Cancelliere
,
N. M.
,
Najafi
,
M.
,
MacDonald
,
D.
,
Natarajan
,
T.
,
Radovanovic
,
I.
,
Krings
,
T.
,
Rutka
,
J.
,
Nicholson
,
P.
, and
Steinman
,
D. A.
,
2021
, “
Torrents of Torment: Turbulence as a Mechanism of Pulsatile Tinnitus Secondary to Venous Stenosis Revealed by High-Fidelity Computational Fluid Dynamics
,”
J. Neurointerv. Surg.
,
13
(
8
), pp.
732
737
.10.1136/neurintsurg-2020-016636
9.
Narsinh
,
K. H.
,
Hui
,
F.
,
Saloner
,
D.
,
Tu-Chan
,
A.
,
Sharon
,
J.
,
Rauschecker
,
A. M.
,
Safoora
,
F.
,
Shah
,
V.
,
Meisel
,
K.
, and
Amans
,
M. R.
,
2022
, “
Diagnostic Approach to Pulsatile Tinnitus: A Narrative Review
,”
JAMA Otolaryngol. Head Neck Surg.
,
148
(
5
), pp.
476
483
.10.1001/jamaoto.2021.4470
10.
Khan
,
M. O.
,
Toro Arana
,
V.
,
Najafi
,
M.
,
MacDonald
,
D. E.
,
Natarajan
,
T.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2021
, “
On the Prevalence of Flow Instabilities From High-Fidelity Computational Fluid Dynamics of Intracranial Bifurcation Aneurysms
,”
J. Biomech.
,
127
, p.
110683
.10.1016/j.jbiomech.2021.110683
11.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.10.1007/s11517-008-0420-1
12.
Longest
,
P. W.
,
Bass
,
K.
,
Dutta
,
R.
,
Rani
,
V.
,
Thomas
,
M. L.
,
El-Achwah
,
A.
, and
Hindle
,
M.
,
2019
, “
Use of Computational Fluid Dynamics Deposition Modeling in Respiratory Drug Delivery
,”
Expert Opin. Drug Deliv.
,
16
(
1
), pp.
7
26
.10.1080/17425247.2019.1551875
13.
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
Rethinking Turbulence in Blood
,”
Biorheology
,
46
(
2
), pp.
77
81
.10.3233/BIR-2009-0538
14.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
15.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
2018
,
A First Course in Turbulence
,
MIT Press
, Cambridge, MA.
16.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(
3
), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
17.
Mortensen
,
M.
, and
Valen-Sendstad
,
K.
,
2015
, “
Oasis: A High-Level/High-Performance Open Source Navier–Stokes Solver
,”
Comput. Phys. Comm.
,
188
, pp.
177
188
.10.1016/j.cpc.2014.10.026
18.
Si
,
H.
,
2015
, “
TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator
,”
ACM Trans. Math. Software
,
41
(
2
), pp.
1
36
.10.1145/2629697
19.
Khan
,
M. O.
,
Chnafa
,
C.
,
Gallo
,
D.
,
Molinari
,
F.
,
Morbiducci
,
U.
,
Steinman
,
D. A.
, and
Valen-Sendstad
,
K.
,
2017
, “
On the Quantification and Visualization of Transient Periodic Instabilities in Pulsatile Flows
,”
J. Biomech.
,
52
, pp.
179
182
.10.1016/j.jbiomech.2016.12.037
20.
Natarajan
,
T.
,
MacDonald
,
D. E.
,
Najafi
,
M.
,
Khan
,
M. O.
, and
Steinman
,
D. A.
,
2020
, “
On the Spectrographic Representation of Cardiovascular Flow Instabilities
,”
J. Biomech.
,
110
, p.
109977
.10.1016/j.jbiomech.2020.109977
21.
Khan
,
M. O.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2017
, “
Cerebral Aneurysm Blood Flow Simulations: There's Solver Settings and Then There's Solver Settings
,”
J. Biomech.
,
61
, p.
280
.10.1016/j.jbiomech.2017.04.039
You do not currently have access to this content.