Abstract

Sophisticated muscle material models are required to perform detailed finite element simulations of soft tissue; however, state-of-the-art muscle models are not among the built-in materials in popular commercial finite element software packages. Implementing user-defined muscle material models is challenging for two reasons: deriving the tangent modulus tensor for a material with a complex strain energy function is tedious and programing the algorithm to compute it is error-prone. These challenges hinder widespread use of such models in software that employs implicit, nonlinear, Newton-type finite element methods. We implement a muscle material model in Ansys using an approximation of the tangent modulus, which simplifies its derivation and implementation. Three test models were constructed by revolving a rectangle (RR), a right trapezoid (RTR), and a generic obtuse trapezoid (RTO) around the muscle's centerline. A displacement was applied to one end of each muscle, holding the other end fixed. The results were validated against analogous simulations in FEBio, which uses the same muscle model but with the exact tangent modulus. Overall, good agreement was found between our Ansys and FEBio simulations, though some noticeable discrepancies were observed. For the elements along the muscle's centerline, the root-mean-square-percentage error in the Von Mises stress was 0.00%, 3.03%, and 6.75% for the RR, RTR, and RTO models, respectively; similar errors in longitudinal strain were observed. We provide our Ansys implementation so that others can reproduce and extend our results.

References

1.
Wang
,
Y.
,
Downie
,
S.
,
Wood
,
N.
,
Firmin
,
D.
, and
Xu
,
X. Y.
,
2013
, “
Finite Element Analysis of the Deformation of Deep Veins in the Lower Limb Under External Compression
,”
Med. Eng. Phys.
,
35
(
4
), pp.
515
523
.10.1016/j.medengphy.2012.06.019
2.
Rehorn
,
M. R.
, and
Blemker
,
S. S.
,
2010
, “
The Effects of Aponeurosis Geometry on Strain Injury Susceptibility Explored With a 3D Muscle Model
,”
J. Biomech.
,
43
(
13
), pp.
2574
2581
.10.1016/j.jbiomech.2010.05.011
3.
Böl
,
M.
, and
Reese
,
S.
,
2008
, “
Micromechanical Modelling of Skeletal Muscles Based on the Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
489
504
.10.1080/10255840701771750
4.
Weickenmeier
,
J.
,
Itskov
,
M.
,
Mazza
,
E.
, and
Jabareen
,
M.
,
2014
, “
A Physically Motivated Constitutive Model for 3D Numerical Simulation of Skeletal Muscles
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
5
), pp.
545
562
.10.1002/cnm.2618
5.
Röhrle
,
O.
,
Davidson
,
J. B.
, and
Pullan
,
A. J.
,
2008
, “
Bridging Scales: A Three-Dimensional Electromechanical Finite Element Model of Skeletal Muscle
,”
SIAM J. Sci. Comput.
,
30
(
6
), pp.
2882
2904
.10.1137/070691504
6.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S. L.
,
2005
, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
,
38
(
4
), pp.
657
665
.10.1016/j.jbiomech.2004.04.009
7.
Oomens
,
C. W. J.
,
Maenhout
,
M.
,
van Oijen
,
C. H.
,
Drost
,
M. R.
, and
Baaijens
,
F. P.
,
2003
, “
Finite Element Modelling of Contracting Skeletal Muscle
,”
Philos. Trans. R. Soc., London B Biol. Sci.
,
358
(
1437
), pp.
1453
1460
.10.1098/rstb.2003.1345
8.
Dao
,
T. T.
, and
Tho
,
M.-C. H. B.
,
2018
, “
A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations
,”
Appl. Bionics Biomech.
,
2018
, pp.
1
17
.10.1155/2018/7631818
9.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London B Biol. Sci.
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
10.
Uchida
,
T. K.
, and
Delp
,
S. L.
,
2021
,
Biomechanics of Movement: The Science of Sports, Robotics, and Rehabilitation
,
The MIT Press
,
Cambridge, MA
.
11.
Hernández-Gascón
,
B.
,
Grasa
,
J.
,
Calvo
,
B.
, and
Rodríguez
,
J. F.
,
2013
, “
A 3D Electro-Mechanical Continuum Model for Simulating Skeletal Muscle Contraction
,”
J. Theor. Biol.
,
335
, pp.
108
118
.10.1016/j.jtbi.2013.06.029
12.
Böl
,
M.
,
Weikert
,
R.
, and
Weichert
,
C.
,
2011
, “
A Coupled Electromechanical Model for the Excitation-Dependent Contraction of Skeletal Muscle
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1299
1310
.10.1016/j.jmbbm.2011.04.017
13.
Huxley
,
A. F.
,
1957
, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Biophys. Chem.
,
7
, pp.
255
318
.10.1016/S0096-4174(18)30128-8
14.
Beldie
,
L.
,
Walker
,
B.
,
Lu
,
Y.
,
Richmond
,
S.
, and
Middleton
,
J.
,
2010
, “
Finite Element Modelling of Maxillofacial Surgery and Facial Expressions – a Preliminary Study
,”
Int. J. Med. Robot.
,
6
(
4
), pp.
422
430
.10.1002/rcs.352
15.
Calvo
,
B.
,
Ramírez
,
A.
,
Alonso
,
A.
,
Grasa
,
J.
,
Soteras
,
F.
,
Osta
,
R.
, and
Muñoz
,
M. J.
,
2010
, “
Passive Nonlinear Elastic Behaviour of Skeletal Muscle: Experimental Results and Model Formulation
,”
J. Biomech.
,
43
(
2
), pp.
318
325
.10.1016/j.jbiomech.2009.08.032
16.
Ehret
,
A. E.
, and
Itskov
,
M.
,
2007
, “
A Polyconvex Hyperelastic Model for Fiber-Reinforced Materials in Application to Soft Tissues
,”
J. Mater. Sci.
,
42
(
21
), pp.
8853
8863
.10.1007/s10853-007-1812-6
17.
Hedenstierna
,
S.
, and
Halldin
,
P.
,
2008
, “
How Does a Three-Dimensional Continuum Muscle Model Affect the Kinematics and Muscle Strains of a Finite Element Neck Model Compared to a Discrete Muscle Model in Rear-End, Frontal, and Lateral Impacts
,”
Spine
,
33
(
8
), pp.
E236
E245
.10.1097/BRS.0b013e31816b8812
18.
Zöllner
,
A. M.
,
Pok
,
J. M.
,
McWalter
,
E. J.
,
Gold
,
G. E.
, and
Kuhl
,
E.
,
2015
, “
On High Heels and Short Muscles: A Multiscale Model for Sarcomere Loss in the Gastrocnemius Muscle
,”
J. Theor. Biol.
,
365
, pp.
301
310
.10.1016/j.jtbi.2014.10.036
19.
Büchler
,
P.
,
Ramaniraka
,
N. A.
,
Rakotomanana
,
L. R.
,
Iannotti
,
J. P.
, and
Farron
,
A.
,
2002
, “
A Finite Element Model of the Shoulder: Application to the Comparison of Normal and Osteoarthritic Joints
,”
Clin. Biomech.
,
17
(
9–10
), pp.
630
639
.10.1016/S0268-0033(02)00106-7
20.
Barbarino
,
G. G.
,
Jabareen
,
M.
,
Trzewik
,
J.
,
Nkengne
,
A.
,
Stamatas
,
G.
, and
Mazza
,
E.
,
2009
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Face
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
041006
.10.1115/1.3049857
21.
Ehret
,
A. E.
,
Böl
,
M.
, and
Itskov
,
M.
,
2011
, “
A Continuum Constitutive Model for the Active Behaviour of Skeletal Muscle
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
625
636
.10.1016/j.jmps.2010.12.008
22.
Grasa
,
J.
,
Ramírez
,
A.
,
Osta
,
R.
,
Muñoz
,
M. J.
,
Soteras
,
F.
, and
Calvo
,
B.
,
2011
, “
A 3D Active-Passive Numerical Skeletal Muscle Model Incorporating Initial Tissue Strains. Validation With Experimental Results on Rat Tibialis Anterior Muscle
,”
Biomech. Model. Mechanobiol.
,
10
(
5
), pp.
779
787
.10.1007/s10237-010-0273-z
23.
Li
,
J.
,
Lu
,
Y.
,
Miller
,
S. C.
,
Jin
,
Z.
, and
Hua
,
X.
,
2019
, “
Development of a Finite Element Musculoskeletal Model With the Ability to Predict Contractions of Three-Dimensional Muscles
,”
J. Biomech.
,
94
, pp.
230
234
.10.1016/j.jbiomech.2019.07.042
24.
Tang
,
C. Y.
,
Zhang
,
G.
, and
Tsui
,
C. P.
,
2009
, “
A 3D Skeletal Muscle Model Coupled With Active Contraction of Muscle Fibres and Hyperelastic Behaviour
,”
J. Biomech.
,
42
(
7
), pp.
865
872
.10.1016/j.jbiomech.2009.01.021
25.
Li
,
F.
,
Li
,
H.
,
Hu
,
W.
,
Su
,
S.
, and
Wang
,
B.
,
2016
, “
Simulation of Muscle Activation With Coupled Nonlinear FE Models
,”
J. Mech. Med. Biol.
,
16
(
06
), p.
1650082
.10.1142/S0219519416500822
26.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
27.
Maas
,
S. A.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2017
, “
FEBio: History and Advances
,”
Annu. Rev. Biomed. Eng.
,
19
(
1
), pp.
279
299
.10.1146/annurev-bioeng-071516-044738
28.
Scherb
,
D.
,
Wartzack
,
S.
, and
Miehling
,
J.
,
2023
, “
Modelling the Interaction Between Wearable Assistive Devices and Digital Human Models—a Systematic Review
,”
Front. Bioeng. Biotechnol.
,
10
, p.
1044275
.10.3389/fbioe.2022.1044275
29.
Yandell
,
M. B.
,
Quinlivan
,
B. T.
,
Popov
,
D.
,
Walsh
,
C.
, and
Zelik
,
K. E.
,
2017
, “
Physical Interface Dynamics Alter How Robotic Exosuits Augment Human Movement: Implications for Optimizing Wearable Assistive Devices
,”
J. Neuroeng. Rehabil.
,
14
(
1
), p.
40
.10.1186/s12984-017-0247-9
30.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
31.
Cheng
,
J.
, and
Zhang
,
L. T.
,
2018
, “
A General Approach to Derive Stress and Elasticity Tensors for Hyperelastic Isotropic and Anisotropic Biomaterials
,”
Int. J. Comput. Methods
,
15
(
04
), p.
1850028
.10.1142/S0219876218500287
32.
ANSYS Inc.,
2013, “
ANSYS Mechanical APDL Technology Demonstration Guide
,” Release 15.0, ANSYS Inc.,
Canonsburg, PA
.
33.
Miehe
,
C.
,
1996
, “
Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large-Strain Computational Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
3–4
), pp.
223
240
.10.1016/0045-7825(96)01019-5
34.
Sun
,
W.
,
Chaikof
,
E. L.
, and
Levenston
,
M. E.
,
2008
, “
Numerical Approximation of Tangent Moduli for Finite Element Implementations of Nonlinear Hyperelastic Material Models
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061003
.10.1115/1.2979872
35.
Tanaka
,
M.
, and
Fujikawa
,
M.
,
2011
, “
Numerical Approximation of Consistent Tangent Moduli Using Complex-Step Derivative and Its Application to Finite Deformation Problems
,”
Trans. Jpn. Soc. Mech. Eng. A
,
77
(
773
), pp.
27
38
.10.1299/kikaia.77.27
36.
Suchocki
,
C.
,
2011
, “
A Finite Element Implementation of Knowles Stored-Energy Function: Theory, Coding and Applications
,”
Arch. Mech. Eng.
,
58
(
3
), pp.
319
346
.10.2478/v10180-011-0021-7
37.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
38.
Liu
,
H.
, and
Sun
,
W.
,
2017
, “
Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081007
.10.1115/1.4036829
39.
Fehervary
,
H.
,
Maes
,
L.
,
Vastmans
,
J.
,
Kloosterman
,
G.
, and
Famaey
,
N.
,
2020
, “
How to Implement User-Defined Fiber-Reinforced Hyperelastic Materials in Finite Element Software
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103737
.10.1016/j.jmbbm.2020.103737
40.
Liu
,
H.
, and
Sun
,
W.
,
2016
, “
Computational Efficiency of Numerical Approximations of Tangent Moduli for Finite Element Implementation of a Fiber-Reinforced Hyperelastic Material Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
11
), pp.
1171
1180
.10.1080/10255842.2015.1118467
41.
ANSYS Inc.
,
2010
, “
ANSYS Meshing User's Guide
,” Release 13.0, ANSYS Inc.,
Canonsburg, PA
.
42.
Fiorentino
,
N. M.
, and
Blemker
,
S. S.
,
2014
, “
Musculotendon Variability Influences Tissue Strains Experienced by the Biceps Femoris Long Head Muscle During High-Speed Running
,”
J. Biomech.
,
47
(
13
), pp.
3325
3333
.10.1016/j.jbiomech.2014.08.010
43.
Ehlers
,
W.
, and
Eipper
,
G.
,
1998
, “
The Simple Tension Problem at Large Volumetric Strains Computed From Finite Hyperelastic Material Laws
,”
Acta Mech.
,
130
(
1–2
), pp.
17
27
.10.1007/BF01187040
44.
Helfenstein
,
J.
,
Jabareen
,
M.
,
Mazza
,
E.
, and
Govindjee
,
S.
,
2010
, “
On Non-Physical Response in Models for Fiber-Reinforced Hyperelastic Materials
,”
Int. J. Solids Struct.
,
47
(
16
), pp.
2056
2061
.10.1016/j.ijsolstr.2010.04.005
You do not currently have access to this content.