Abstract

Rigid interspinous process fixation (RIPF) has been recently discussed as an alternative to pedicle screw fixation (PSF) for reducing trauma in lumbar interbody fusion (LIF) surgery. This study aimed to investigate biomechanics of the lumbar spine with RIPF, and also to compare biomechanical differences between two postoperative stages (before and after bony fusion). Based on an intact finite-element model of lumbosacral spine, the models of single-level LIF with RIPF or conventional PSF were developed and were computed for biomechanical responses to the moments of four physiological motions using hybrid testing protocol. It was found that compared with PSF, range of motion (ROM), intradiscal pressure (IDP), and facet joint forces (FJF) at adjacent segments of the surgical level for RIPF were decreased by up to 8.4%, 2.3%, and 16.8%, respectively, but ROM and endplate stress at the surgical segment were increased by up to 285.3% and 174.3%, respectively. The results of comparison between lumbar spine with RIPF before and after bony fusion showed that ROM and endplate stress at the surgical segment were decreased by up to 62.6% and 40.4%, respectively, when achieved to bony fusion. These findings suggest that lumbar spine with RIPF as compared to PSF has potential to decrease the risk of adjacent segment degeneration but might have lower stability of surgical segment and an increased risk of cage subsidence; When achieved bony fusion, it might be helpful for the lumbar spine with RIPF in increasing stability of surgical segment and reducing failure of bone contact with cage.

References

1.
Bereczki
,
F.
,
Turbucz
,
M.
,
Kiss
,
R.
,
Eltes
,
P. E.
, and
Lazary
,
A.
,
2021
, “
Stability Evaluation of Different Oblique Lumbar Interbody Fusion Constructs in Normal and Osteoporotic Condition-A Finite Element Based Study
,”
Front. Bioeng. Biotechnol.
,
9
, p.
749914
.10.3389/fbioe.2021.749914
2.
Talukdar
,
R. G.
,
Saviour
,
C. M.
,
Tiwarekar
,
K.
,
Dhara
,
S.
, and
Gupta
,
S.
,
2022
, “
Bone Remodeling Around Solid and Porous Interbody Cages in the Lumbar Spine
,”
ASME J. Biomech. Eng.
,
144
(
10
), p.
101011
.10.1115/1.4054457
3.
Wang
,
J. C.
,
Haid
,
R. W.
, Jr
,
Miller
,
J. S.
, and
Robinson
,
J. C.
,
2006
, “
Comparison of CD HORIZON SPIRE Spinous Process Plate Stabilization and Pedicle Screw Fixation After Anterior Lumbar Interbody Fusion. Invited Submission From the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2005
,”
J. Neurosurg. Spine
,
4
(
2
), pp.
132
136
.10.3171/spi.2006.4.2.132
4.
Lee
,
C. H.
,
Hyun
,
S. J.
,
Kim
,
K. J.
,
Jahng
,
T. A.
, and
Kim
,
H. J.
,
2017
, “
Can the Interspinous Device, SPIRE (TM), Be an Alternative Fixation Modality in Posterior Lumbar Fusion Instead of Pedicle Screw?
,”
Turk. Neurosurg.
,
27
(
3
), pp.
408
413
.10.5137/1019-5149.JTN.16097-15.1
5.
Park
,
P.
,
Garton
,
H. J.
,
Gala
,
V. C.
,
Hoff
,
J. T.
, and
McGillicuddy
,
J. E.
,
2004
, “
Adjacent Segment Disease After Lumbar or Lumbosacral Fusion: Review of the Literature
,”
Spine
,
29
(
17
), pp.
1938
1944
.10.1097/01.brs.0000137069.88904.03
6.
Hilibrand
,
A. S.
, and
Robbins
,
M.
,
2004
, “
Adjacent Segment Degeneration and Adjacent Segment Disease: The Consequences of Spinal Fusion?
,”
Spine J.
,
4
(
6 suppl
), pp.
190S
194S
.10.1016/j.spinee.2004.07.007
7.
Erbulut
,
D. U.
,
Kiapour
,
A.
,
Oktenoglu
,
T.
,
Ozer
,
A. F.
, and
Goel
,
V. K.
,
2014
, “
A Computational Biomechanical Investigation of Posterior Dynamic Instrumentation: Combination of Dynamic Rod and Hinged (Dynamic) Screw
,”
ASME J. Biomech. Eng.
,
136
(
5
), p.
051007
.10.1115/1.4027060
8.
Spicher
,
A.
,
Schmoelz
,
W.
,
Schmid
,
R.
,
Stofferin
,
H.
, and
Craig
,
N. J. A.
,
2020
, “
Functional and Radiographic Evaluation of an Interspinous Device as an Adjunct for Lumbar Interbody Fusion Procedures
,”
Biomed. Eng.-Biomed. Tech.
,
65
(
2
), pp.
183
189
.10.1515/bmt-2018-0086
9.
Lopez
,
A. J.
,
Scheer
,
J. K.
,
Dahdaleh
,
N. S.
,
Patel
,
A. A.
, and
Smith
,
Z. A.
,
2017
, “
Lumbar Spinous Process Fixation and Fusion. A Systematic Review and Critical Analysis of an Emerging Spinal Technology
,”
Clin. Spine Surg.
,
30
(
9
), pp.
E1279
E1288
.10.1097/BSD.0000000000000411
10.
Shen
,
H. K.
,
Fogel
,
G. R.
,
Zhu
,
J.
,
Liao
,
Z. H.
, and
Liu
,
W. Q.
,
2019
, “
Biomechanical Analysis of Different Lumbar Interspinous Process Devices: A Finite Element Study
,”
World Neurosurg.
,
127
, pp.
E1112
E1119
.10.1016/j.wneu.2019.04.051
11.
Hu
,
A. N.
,
Sun
,
C.
,
Liang
,
Y.
,
Wang
,
H. L.
,
Li
,
X. L.
, and
Dong
,
J.
,
2019
, “
Multi-Segmental Lumbar Spinal Stenosis Treated With Dynesys Stabilization Versus Lumbar Fusion in Elderly Patients: A Retrospective Study With a Minimum of 5 Years' Follow-Up
,”
Arch. Orthop. Trauma Surg.
,
139
(
10
), pp.
1361
1368
.10.1007/s00402-019-03234-3
12.
Kim
,
H. J.
,
Bak
,
K. H.
,
Chun
,
H. J.
,
Oh
,
S. J.
,
Kang
,
T. H.
, and
Yang
,
M. S.
,
2012
, “
Posterior Interspinous Fusion Device for One-Level Fusion in Degenerative Lumbar Spine Disease: Comparison With Pedicle Screw Fixation-Preliminary Report of at Least One Year Follow Up
,”
J. Korean Neurosurg. Soc.
,
52
(
4
), pp.
359
364
.10.3340/jkns.2012.52.4.359
13.
Techy
,
F.
,
Mageswaran
,
P.
,
Colbrunn
,
R. W.
,
Bonner
,
T. F.
, and
McLain
,
R. F.
,
2013
, “
Properties of an Interspinous Fixation Device (ISD) in Lumbar Fusion Constructs: A Biomechanical Study
,”
Spine J.
,
13
(
5
), pp.
572
579
.10.1016/j.spinee.2013.01.042
14.
Yu
,
X. C.
,
Zhu
,
L.
, and
Su
,
Q.
,
2014
, “
Lumbar Spine Stability After Combined Application of Interspinous Fastener and Modified Posterior Lumbar Interbody Fusion: A Biomechanical Study
,”
Arch. Orthop. Trauma Surg.
,
134
(
5
), pp.
623
629
.10.1007/s00402-014-1977-9
15.
Bae
,
I. S.
,
Bak
,
K. H.
,
Chun
,
H. J.
,
Il Ryu
,
J.
,
Park
,
S. J.
, and
Lee
,
S. J.
,
2020
, “
Biomechanical Analysis of a Newly Developed Interspinous Process Device Conjunction With Interbody Cage Based on a Finite Element Model
,”
PLoS One
,
15
(
12
), p.
e0243771
.10.1371/journal.pone.0243771
16.
Guo
,
L. X.
, and
Fan
,
W.
,
2018
, “
Dynamic Response of the Lumbar Spine to Whole-Body Vibration Under a Compressive Follower Preload
,”
Spine
,
43
(
3
), pp.
E143
E153
.10.1097/BRS.0000000000002247
17.
Fan
,
W.
, and
Guo
,
L. X.
,
2020
, “
The Effect of Non-Fusion Dynamic Stabilization on Biomechanical Responses of the Implanted Lumbar Spine During Whole-Body Vibration
,”
Comput. Methods Programs Biomed.
,
192
, p.
105441
.10.1016/j.cmpb.2020.105441
18.
Weisse
,
B.
,
Aiyangar
,
A. K.
,
Affolter
,
C.
,
Gander
,
R.
,
Terrasi
,
G. P.
, and
Ploeg
,
H.
,
2012
, “
Determination of the Translational and Rotational Stiffnesses of an L4-L5 Functional Spinal Unit Using a Specimen-Specific Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
45
61
.10.1016/j.jmbbm.2012.04.002
19.
Polikeit
,
A.
,
Ferguson
,
S. J.
,
Nolte
,
L. P.
, and
Orr
,
T. E.
,
2003
, “
Factors Influencing Stresses in the Lumbar Spine After the Insertion of Intervertebral Cages: Finite Element Analysis
,”
Eur. Spine J.
,
12
(
4
), pp.
413
420
.10.1007/s00586-002-0505-8
20.
Adam
,
C.
,
Pearcy
,
M.
, and
McCombe
,
P.
,
2003
, “
Stress Analysis of Interbody Fusion–Finite Element Modelling of Intervertebral Implant and Vertebral Body
,”
Clin. Biomech.
,
18
(
4
), pp.
265
272
.10.1016/S0268-0033(03)00022-6
21.
Agarwal
,
A.
,
Palepu
,
V.
,
Agarwal
,
A. K.
,
Goel
,
V. K.
, and
Yildirim
,
E. D.
,
2013
, “
Biomechanical Evaluation of an Endplate-Conformed Polycaprolactone-Hydroxyapatite Intervertebral Fusion Graft and Its Comparison With a Typical Nonconformed Cortical Graft
,”
ASME J. Biomech. Eng.
,
135
(
6
), p.
061005
.10.1115/1.4023988
22.
Lee
,
Y. H.
,
Chung
,
C. J.
,
Wang
,
C. W.
,
Peng
,
Y. T.
,
Chang
,
C. H.
,
Chen
,
C. H.
,
Chen
,
Y. N.
, and
Li
,
C. T.
,
2016
, “
Computational Comparison of Three Posterior Lumbar Interbody Fusion Techniques by Using Porous Titanium Interbody Cages With 50% Porosity
,”
Comput. Biol. Med.
,
71
, pp.
35
45
.10.1016/j.compbiomed.2016.01.024
23.
Areias
,
B.
,
Caetano
,
S. C.
,
Sousa
,
L. C.
,
Parente
,
M.
,
Jorge
,
R. N.
,
Sousa
,
H.
, and
Goncalves
,
J. M.
,
2020
, “
Numerical Simulation of Lateral and Transforaminal Lumbar Interbody Fusion, Two Minimally Invasive Surgical Approaches
,”
Comput. Methods Biomech. Biomed. Eng.
,
23
(
8
), pp.
408
421
.10.1080/10255842.2020.1734579
24.
Panjabi
,
M. M.
,
Malcolmson
,
G.
,
Teng
,
E.
,
Tominaga
,
Y.
,
Henderson
,
G.
, and
Serhan
,
H.
,
2007
, “
Hybrid Testing of Lumbar CHARITE Discs Versus Fusions
,”
Spine
,
32
(
9
), pp.
959
66
.10.1097/01.brs.0000260792.13893.88
25.
Galbusera
,
F.
,
Bellini
,
C. M.
,
Anasetti
,
F.
,
Ciavarro
,
C.
,
Lovi
,
A.
, and
Brayda-Bruno
,
M.
,
2011
, “
Rigid and Flexible Spinal Stabilization Devices: A Biomechanical Comparison
,”
Med. Eng. Phys.
,
33
(
4
), pp.
490
496
.10.1016/j.medengphy.2010.11.018
26.
Du
,
C. F.
,
Cai
,
X. Y.
,
Gui
,
W.
,
Sun
,
M. S.
,
Liu
,
Z. X.
,
Liu
,
C. J.
,
Zhang
,
C. Q.
, and
Huang
,
Y. P.
,
2021
, “
Does Oblique Lumbar Interbody Fusion Promote Adjacent Degeneration in Degenerative Disc Disease: A Finite Element Analysis
,”
Comput. Biol. Med.
,
128
, p.
104122
.10.1016/j.compbiomed.2020.104122
27.
Erbulut
,
D. U.
,
Zafarparandeh
,
I.
,
Hassan
,
C. R.
,
Lazoglu
,
I.
, and
Ozer
,
A. F.
,
2015
, “
Determination of the Biomechanical Effect of an Interspinous Process Device on Implanted and Adjacent Lumbar Spinal Segments Using a Hybrid Testing Protocol: A Finite-Element Study
,”
J. Neurosurg. Spine.
,
23
(
2
), pp.
200
208
.10.3171/2014.12.SPINE14419
28.
Arnold
,
P. M.
, and
Friis
,
E. A.
,
2015
, “
Biomechanical Effects of Interspinous Process Devices Using a Hybrid Testing Protocol
,”
J. Neurosurg. Spine.
,
23
(
2
), pp.
197
199
.10.3171/2015.1.SPINE141277
29.
Xu
,
H.
,
Ju
,
W.
,
Xu
,
N.
,
Zhang
,
X. J.
,
Zhu
,
X. D.
,
Zhu
,
L. F.
,
Qian
,
X. F.
,
Wen
,
F. B.
,
Wu
,
W. D.
, and
Jiang
,
F. G.
,
2013
, “
Biomechanical Comparison of Transforaminal Lumbar Interbody Fusion With 1 or 2 Cages by Finite-Element Analysis
,”
Neurosurgery
,
73
, pp.
198
205
.10.1227/01.neu.0000430320.39870.f7
30.
Zhang
,
M. Z.
,
Pu
,
F.
,
Xu
,
L. Q.
,
Zhang
,
L. L.
,
Yao
,
J.
,
Li
,
D. Y.
,
Wang
,
Y.
, and
Fan
,
Y. B.
,
2016
, “
Long-Term Effects of Placing One or Two Cages in Instrumented Posterior Lumbar Interbody Fusion
,”
Int. Orthop.
,
40
(
6
), pp.
1239
1246
.10.1007/s00264-016-3173-8
31.
Bae
,
I. S.
,
Bak
,
K. H.
, and
Chun
,
H. J.
,
2020
, “
Interspinous Process Fixation Device Versus Extended Pedicle Screw Fixation for Symptomatic Adjacent Segment Disease: 3-Year Retrospective Study
,”
World Neurosurg.
,
139
, pp.
E144
E150
.10.1016/j.wneu.2020.03.147
You do not currently have access to this content.