Abstract

Ureteroscopy is a commonly performed medical procedure to treat stones in the kidney and ureter using a ureteroscope. Throughout the procedure, saline is irrigated through the scope to aid visibility and wash-out debris from stone fragmentation. The key challenge that this research addresses is to build a fundamental understanding of the interaction between the kidney stones/stone fragments and the flow dynamics in the renal pelvis flow. We examine the time-dependent flow dynamics inside an idealized renal pelvis in the context of a surgical procedure for kidney stone removal. Here, we examine the time-dependent evolution of these vortical flow structures in three dimensions, and incorporate the presence of rigid kidney stones. We perform direct numerical simulations, solving the transient Navier–Stokes equations in a spherical domain. Our numerical predictions for the flow dynamics in the absence of stones are validated with available experimental and numerical data, and the governing parameters and flow regimes are chosen carefully in order to satisfy several clinical constraints. The results shed light on the crucial role of flow circulation in the renal cavity and its effect on the trajectories of rigid stones. We demonstrate that stones can either be washed out of the cavity along with the fluid, or be trapped in the cavity via their interaction with vortical flow structures. Additionally, we study the effect of multiple stones in the flow field within the cavity in terms of the kinetic energy, entrapped fluid volume, and the clearance rate of a passive tracer modeled via an advection–diffusion equation. We demonstrate that the flow in the presence of stones features a higher vorticity production within the cavity compared with the stone-free cases.

References

1.
Romero
,
V.
,
Akpinar
,
H.
, and
Assimos
,
D. G.
,
2010
, “
Kidney Stones: A Global Picture of Prevalence, Incidence, and Associated Risk Factors
,”
Rev. Urol.
,
12
(
2–3
), pp.
e86
e96
.https://pubmed.ncbi.nlm.nih.gov/20811557/
2.
Cortes
,
J. A. S.
,
Motamedinia
,
P.
, and
Gupta
,
M.
,
2011
, “
Update on Technological and Selection Factors Influencing Shockwave Lithotripsy of Renal Stones in Adults and Children
,”
Curr. Opin. Urol.
,
21
(
2
), pp.
134
140
.10.1097/MOU.0b013e3283435c1f
3.
Turney
,
B. W.
,
Reynard
,
J. M.
,
Noble
,
J. G.
, and
Keoghane
,
S. R.
,
2012
, “
Trends in Urological Stone Disease
,”
BJU Int.
,
109
(
7
), pp.
1082
1087
.10.1111/j.1464-410X.2011.10495.x
4.
Khan
,
S. R.
,
Pearle
,
M. S.
,
Robertson
,
W. G.
,
Gambaro
,
G.
,
Canales
,
B. K.
,
Doizi
,
S.
,
Traxer
,
O.
, et al.,
2016
, “
Kidney Stones
,”
Nat. Rev. Dis. Primers
,
2
(
1
), pp.
1
23
.10.1038/nrdp.2016.8
5.
Segura
,
J. W.
,
Patterson
,
D. E.
,
LeRoy
,
A. J.
,
Williams
,
H. J.
,
Barrett
,
D. M.
,
Benson
,
R. C.
,
May
,
G. R.
, et al.,
1985
, “
Percutaneous Removal of Kidney Stones: Review of 1,000 Cases
,”
J. Urol.
,
134
(
6
), pp.
1077
1081
.10.1016/S0022-5347(17)47633-6
6.
Miller
,
N. L.
, and
Lingeman
,
J. E.
,
2007
, “
Management of Kidney Stones
,”
BMJ
,
334
(
7591
), pp.
468
472
.10.1136/bmj.39113.480185.80
7.
Cui
,
H.
,
Thomee
,
E.
,
Noble
,
J. G.
,
Reynard
,
J. M.
, and
Turney
,
B. W.
,
2013
, “
Efficacy of the Lithotripsy in Treating Lower Pole Renal Stones
,”
Urolithiasis
,
41
(
3
), pp.
231
234
.10.1007/s00240-013-0549-8
8.
Keller
,
E.
,
De Coninck
,
V.
,
Doizi
,
S.
,
Daudon
,
M.
, and
Traxer
,
O.
,
2021
, “
What is the Exact Definition of Stone Dust? an In Vitro Evaluation
,”
World J. Urol.
,
39
, pp.
187
194
.10.1007/s00345-020-03178-z
9.
Lykoudis
,
P. S.
, and
Roos
,
R.
,
1970
, “
The Fluid Mechanics of the Ureter From a Lubrication Theory Point of View
,”
J. Fluid Mech.
,
43
(
4
), pp.
661
674
.10.1017/S0022112070002653
10.
Yang
,
P. J.
,
Pham
,
J.
,
Choo
,
J.
, and
Hu
,
D. L.
,
2014
, “
Duration of Urination Does Not Change With Body Size
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
33
), pp.
11932
11937
.10.1073/pnas.1402289111
11.
Oratis
,
A. T.
,
Subasic
,
J. J.
,
Hernandez
,
N.
,
Bird
,
J. C.
, and
Eisner
,
B. H.
,
2018
, “
A Simple Fluid Dynamic Model of Renal Pelvis Pressures During Ureteroscopic Kidney Stone Treatment
,”
PLoS One
,
13
(
11
), pp.
e0208209
e0208213
.10.1371/journal.pone.0208209
12.
Williams
,
J. G.
,
Rouse
,
L.
,
Turney
,
B. W.
,
Waters
,
S. L.
, and
Moulton
,
D. E.
,
2020
, “
A Lumped-Parameter Model for Kidney Pressure During Stone Removal
,”
IMA J. Appl. Math.
,
85
(
5
), pp.
703
723
.10.1093/imamat/hxaa020
13.
Williams
,
J. G.
,
Castrejón-Pita
,
A. A.
,
Turney
,
B. W.
,
Farrell
,
P. E.
,
Tavener
,
S. J.
,
Moulton
,
D. E.
, and
Waters
,
S. L.
,
2020
, “
Cavity Flow Characteristics and Applications to Kidney Stone Removal
,”
J. Fluid Mech.
,
902
, p.
A16
.10.1017/jfm.2020.583
14.
Williams
,
J.
,
Wechsung
,
F.
,
Turney
,
B.
,
Waters
,
S.
, and
Moulton
,
D.
,
2021
, “
Shape Optimisation for Faster Washout in Recirculating Flows
,”
J. Fluid Mech.
,
914
, p.
A37
.10.1017/jfm.2020.1119
15.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
16.
Baraff
,
D.
,
1997
, “
An Introduction to Physically Based Modeling: Rigid Body Simulation II–Nonpenetration Constraints
,”
SIGGRAPH Course Notes
, pp.
D31
D68
.https://www.cs.cmu.edu/~baraff/sigcourse/notesd2.pdf
17.
Harlow
,
F.
, and
Welch
,
J.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
1988
.10.1063/1.1761178
18.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
19.
Shu
,
C.
, and
Osher
,
S.
,
1989
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II
,”
J. Comput. Phys.
,
83
(
1
), pp.
32
78
.10.1016/0021-9991(89)90222-2
20.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
21.
Fadlun
,
E.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
22.
Shin
,
S.
, and
Juric
,
D.
,
2009
, “
A Hybrid Interface Method for Three-Dimensional Multiphase Flows Based on Front Tracking and Level Set Techniques
,”
Int. J. Numer. Methods Fluids
,
60
(
7
), pp.
753
778
.10.1002/fld.1912
23.
Shin
,
S.
,
Chergui
,
J.
, and
Juric
,
D.
,
2020
, “
Interaction of a Deformable Solid With Two-Phase Flows: An Eulerian-Based Numerical Model for Fluid-Structure Interaction Using the Level Contour Reconstruction Method
,”
Int. J. Numer. Methods Fluids
,
92
(
11
), pp.
1478
1505
.10.1002/fld.4836
24.
Glowinski
,
R.
,
Pan
,
T.-W.
,
Hesla
,
T.
, and
Joseph
,
D.
,
1999
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
25
(
5
), pp.
755
794
.10.1016/S0301-9322(98)00048-2
25.
Constante-Amores
,
C. R.
,
Kahouadji
,
L.
,
Batchvarov
,
A.
,
Shin
,
S.
,
Chergui
,
J.
,
Juric
,
D.
, and
Matar
,
O. K.
,
2020
, “
Rico and the Jets: Direct Numerical Simulations of Turbulent Liquid Jets
,”
Phys. Rev. Fluids
,
5
(
11
), p.
110501
.10.1103/PhysRevFluids.5.110501
26.
Constante-Amores
,
C.
,
Kahouadji
,
L.
,
Batchvarov
,
A.
,
Shin
,
S.
,
Chergui
,
J.
,
Juric
,
D.
, and
Matar
,
O.
,
2021
, “
Direct Numerical Simulations of Transient Turbulent Jets: Vortex-Interface Interactions
,”
J. Fluid Mech.
,
922
, p.
A6
.10.1017/jfm.2021.519
27.
Zhong
,
P.
,
Chuong
,
C.
, and
Preminger
,
G.
,
1993
, “
Characterization of Fracture Toughness of Renal Calculi Using a Microindentation Technique
,”
J. Mater. Sci. Lett.
,
12
(
18
), pp.
1460
1462
.10.1007/BF00591608
28.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.10.1017/S0022112097008410
29.
Marugán-Cruz
,
C.
,
Rodríguez-Rodríguez
,
J.
, and
Martínez-Bazán
,
C.
,
2013
, “
Formation Regimes of Vortex Rings in Negatively Buoyant Starting Jets
,”
J. Fluid Mech.
,
716
, pp.
470
486
.10.1017/jfm.2012.554
30.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.10.1115/1.2836304
31.
Sexton
,
A.
,
Punch
,
J.
,
Stafford
,
J.
, and
Jeffers
,
N.
,
2018
, “
The Thermal and Hydrodynamic Behaviour of Confined, Normally Impinging Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
,
123
, pp.
40
53
.10.1016/j.ijheatmasstransfer.2018.02.083
32.
Sivasamy
,
A.
,
Selladurai
,
V.
, and
Rajesh Kanna
,
P.
,
2007
, “
Numerical Simulation of Two-Dimensional Laminar Slot-Jet Impingement Flows Confined by a Parallel Wall
,”
Int. J. Numer. Methods Fluids
,
55
(
10
), pp.
965
983
.10.1002/fld.1492
33.
Lee
,
H.
,
Yoon
,
H.
, and
Ha
,
M.
,
2008
, “
A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Region for Different Channel Heights
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
4055
4068
.10.1016/j.ijheatmasstransfer.2008.01.015
34.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbul. Using Numer. Simul. Databases
,
1
(
11
), pp.
193
208
.
35.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press, Cambridge Mathematical Library
, Cambridge, UK.
36.
Essmann
,
E.
,
Shui
,
P.
,
Popinet
,
S.
,
Zaleski
,
S.
,
Valluri
,
P.
, and
Govindarajan
,
R.
,
2020
, “
Chaotic Orbits of Tumbling Ellipsoids
,”
J. Fluid Mech.
,
903
, p.
A10
.10.1017/jfm.2020.595
37.
Aldoukhi
,
A. H.
,
Roberts
,
W. W.
,
Hall
,
T. L.
, and
Ghani
,
K. R.
,
2017
, “
Holmium Laser Lithotripsy in the New Stone Age: Dust or Bust?
,”
Front. Surg.
,
4
, p.
57
.10.3389/fsurg.2017.00057
38.
Moore
,
R. G.
,
Bishoff
,
J. T.
,
Loenig
,
S.
, and
Docimo
,
S. G.
,
2005
,
Minimally Invasive Urological Surgery
,
CRC Press
, Boca Raton, FL.
39.
Smith
,
A. D.
, Preminger, M. G., Kavoussi, L. R., Badlani, G. H., and Rastinehad, A. R.,
2007
, Front Matter,
Smith's Textbook of Endourology
,
PMPH-USA
, Shelton, CT.10.1002/9781119245193.fmatter1
40.
Shin
,
S.
,
Chergui
,
J.
, and
Juric
,
D.
,
2017
, “
A Solver for Massively Parallel Direct Numerical Simulation of Three-Dimensional Multiphase Flows
,”
J. Mech. Sci. Tech.
,
31
(
4
), pp.
1739
1751
.10.1007/s12206-017-0322-y
41.
Constante-Amores
,
C. R.
,
2021
, “
Three-Dimensional Computational Fluid Dynamics Simulations of Complex Multiphase Flows With Surfactants
,”
Ph.D. thesis
,
Imperial College
,
London, UK
.10.25560/93129
42.
Mordant
,
N.
, and
Pinton
,
J. F.
,
2000
, “
Velocity Measurement of a Settling Sphere
,”
Eur. Phys. J. B
,
18
(
2
), pp.
343
352
.10.1007/PL00011074
You do not currently have access to this content.