Abstract

While dental composite long-term aging has already been studied in the past, no data exist about the early aging while it might be detrimental regarding the composites' longevity. This study aims to better understand the effects of early water exposure on dental composites. Dental resin composites with different fillers ratio were subjected to water exposure during 24 h, 1 week, or 1 month. After photopolymerization, the samples were stored at different conditions, whether in wet or dry condition (W, D, respectively) and in wet conditions after a first 24 h storage in dry conditions (DW). Three-point bending tests were performed to measure the flexural modulus. The samples were then subjected to a sorption/desorption protocol. While the matrix alone did not undergo any mechanical degradation with exposure time, the composites matrices presented a decrease in elastic modulus. This decrease was the highest for the matrix with nonsilanized fillers. Interestingly, the DW condition was detrimental for all the samples. Regarding the sample with nonsilanized fillers in DW for 1 month presented an elastic modulus lower than the matrix alone. These results were assigned to the sorption capacity of the polymer matrix, suggesting that the diffusion mechanisms and the nature of water molecules are determinant in the composite degradation. This study showed that dental composite early degradation mechanisms after water exposure are involved in the polymer matrix postpolymerization process as soon as after 24 h. Such mechanisms are detrimental in terms of the dental composite efficiency and have to be understood.

References

1.
Bayne
,
S. C.
,
Ferracane
,
J. L.
,
Marshall
,
G. W.
,
Marshall
,
S. J.
, and
van Noort
,
R.
,
2019
, “
The Evolution of Dental Materials Over the Past Century: Silver and Gold to Tooth Color and Beyond
,”
J. Dent. Res.
,
98
(
3
), pp.
257
265
.10.1177/0022034518822808
2.
Drummond
,
J. L.
,
2008
, “
Degradation, Fatigue, and Failure of Resin Dental Composite Materials
,”
J. Dent. Res.
,
87
(
8
), pp.
710
719
.10.1177/154405910808700802
3.
Gauthier
,
R.
,
Aboulleil
,
H.
,
Chenal
,
J.-M.
,
Chevalier
,
J.
,
Colon
,
P.
, and
Grosgogeat
,
B.
,
2021
, “
Consideration of Dental Tissues and Composite Mechanical Properties in Secondary Caries Development: A Critical Review
,”
J. Adhes. Dent.
,
23
(
4
), pp.
297
308
.10.3290/j.jad.b1649941
4.
López-Suevos
,
F.
, and
Dickens
,
S. H.
,
2008
, “
Degree of Cure and Fracture Properties of Experimental Acid-Resin Modified Composites Under Wet and Dry Conditions
,”
Dent. Mater.
,
24
(
6
), pp.
778
785
.10.1016/j.dental.2007.09.006
5.
Lassila
,
L. V. J.
,
Nohrström
,
T.
, and
Vallittu
,
P. K.
,
2002
, “
The Influence of Short-Term Water Storage on the Flexural Properties of Unidirectional Glass Fiber-Reinforced Composites
,”
Biomaterials
,
23
(
10
), pp.
2221
2229
.10.1016/S0142-9612(01)00355-6
6.
Ito
,
S.
,
Hashimoto
,
M.
,
Wadgaonkar
,
B.
,
Svizero
,
N.
,
Carvalho
,
R. M.
,
Yiu
,
C.
,
Rueggeberg
,
F. A.
,
Foulger
,
S.
,
Saito
,
T.
,
Nishitani
,
Y.
,
Yoshiyama
,
M.
,
Tay
,
F. R.
, and
Pashley
,
D. H.
,
2005
, “
Effects of Resin Hydrophilicity on Water Sorption and Changes in Modulus of Elasticity
,”
Biomaterials
,
26
(
33
), pp.
6449
6459
.10.1016/j.biomaterials.2005.04.052
7.
Levine
,
H.
, and
Slade
,
L.
,
1988
, “
Water as a Plasticizer: Physico-Chemical Aspects of Low-Moisture Polymeric Systems
,”
Water Science Reviews
, Vol.
3
,
Cambridge University Press
, Cambridge, UK, pp.
79
185
.
8.
Hodzic
,
A.
,
Kim
,
J. K.
,
Lowe
,
A. E.
, and
Stachurski
,
Z. H.
,
2004
, “
The Effects of Water Aging on the Interphase Region and Interlaminar Fracture Toughness in Polymer-Glass Composites
,”
Compos. Sci. Technol.
,
64
(
13–14
), pp.
2185
2195
.10.1016/j.compscitech.2004.03.011
9.
Fan
,
J.
,
Tsui
,
G.
,
Tang
,
C.
, and
Chow
,
C.-L.
,
2006
, “
3D Finite Element Analysis of the Damage Effects on the Dental Composite Subject to Water Sorption
,”
Acta Mech. Solida Sin.
,
19
(
3
), pp.
212
222
.10.1007/s10338-006-0626-4
10.
Söderholm
,
K. J.
,
Zigan
,
M.
,
Ragan
,
M.
,
Fischlschweiger
,
W.
, and
Bergman
,
M.
,
1984
, “
Hydrolytic Degradation of Dental Composites
,”
J. Dent. Res.
,
63
(
10
), pp.
1248
1254
.10.1177/00220345840630101701
11.
Fonseca
,
A. S. Q. S.
,
Moreira
,
A. D. L.
,
de Albuquerque
,
P. P. A. C.
,
de Menezes
,
L. R.
,
Pfeifer
,
C. S.
, and
Schneider
,
L. F. J.
,
2017
, “
Effect of Monomer Type on the CC Degree of Conversion, Water Sorption and Solubility, and Color Stability of Model Dental Composites
,”
Dent. Mater.
,
33
(
4
), pp.
394
401
.10.1016/j.dental.2017.01.010
12.
Kalachandra
,
S.
, and
Kusy
,
R. P.
,
1991
, “
Comparison of Water Sorption by Methacrylate and Dimethacrylate Monomers and Their Corresponding Polymers
,”
Polymer
,
32
(
13
), pp.
2428
2434
.10.1016/0032-3861(91)90085-W
13.
Kalachandra
,
S.
,
1989
, “
Influence of Fillers on the Water Sorption of Composites
,”
Dent. Mater.
,
5
(
4
), pp.
283
288
.10.1016/0109-5641(89)90077-8
14.
Zanchi
,
C. H.
,
Ogliari
,
F. A.
,
Marques e Silva
,
R.
,
Lund
,
R. G.
,
Machado
,
H. H.
,
Prati
,
C.
,
Carreño
,
N. L. V.
, and
Piva
,
E.
,
2015
, “
Effect of the Silane Concentration on the Selected Properties of an Experimental Microfilled Composite Resin
,”
Appl. Adhes. Sci.
,
3
(
1
), p.
27
.10.1186/s40563-015-0054-0
15.
Cavalcante
,
L. M.
,
Ferraz
,
L. G.
,
Antunes
,
K. B.
,
Garcia
,
I. M.
,
Schneider
,
L. F. J.
, and
Collares
,
F. M.
,
2021
, “
Silane Content Influences Physicochemical Properties in Nanostructured Model Composites
,”
Dent. Mater.
,
37
(
2
), pp.
e85
e93
.10.1016/j.dental.2020.10.022
16.
Imazato
,
S.
,
Tarumi
,
H.
,
Kato
,
S.
,
Ebi
,
N.
,
Ehara
,
A.
, and
Ebisu
,
S.
,
1999
, “
Water Sorption, Degree of Conversion, and Hydrophobicity of Resins Containing Bis-GMA and TEGDMA
,”
Dent. Mater. J.
,
18
(
1
), pp.
124
132
.10.4012/dmj.18.124
17.
Da Silva
,
E. M.
,
Almeida
,
G. S.
,
Poskus
,
L. T.
, and
Guimarães
,
J. G. A.
,
2008
, “
Relationship Between the Degree of Conversion, Solubility and Salivary Sorption of a Hybrid and a Nanofilled Resin Composite: Influence of the Light-Activation Mode
,”
J. Appl. Oral Sci.
,
16
(
2
), pp.
161
166
.10.1590/S1678-77572008000200015
18.
Ferracane
,
J. L.
,
Berge
,
H. X.
, and
Condon
,
J. R.
,
1998
, “
In Vitro Aging of Dental Composites in Water—Effect of Degree of Conversion, Filler Volume, and Filler/Matrix Coupling
,”
J. Biomed. Mater. Res.
,
42
(
3
), pp.
465
472
.10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F
19.
Boussès
,
Y.
,
Brulat-Bouchard
,
N.
,
Bouchard
,
P. O.
,
Abouelleil
,
H.
, and
Tillier
,
Y.
,
2020
, “
Theoretical Prediction of Dental Composites Yield Stress and Flexural Modulus Based on Filler Volume Ratio
,”
Dent. Mater.
,
36
(
1
), pp.
97
107
.10.1016/j.dental.2019.10.012
20.
Boussès
,
Y.
,
Brulat-Bouchard
,
N.
,
Bouchard
,
P.
, and
Tillier
,
Y.
,
2021
, “
A Numerical, Theoretical and Experimental Study of the Effect of Thermocycling on the Matrix-Filler Interface of Dental Restorative Materials
,”
Dent. Mater.
,
37
(
5
), pp.
772
782
.10.1016/j.dental.2021.01.010
21.
Price
,
R. B.
,
Whalen
,
J. M.
,
Price
,
T. B.
,
Felix
,
C. M.
, and
Fahey
,
J.
,
2011
, “
The Effect of Specimen Temperature on the Polymerization of a Resin-Composite
,”
Dent. Mater.
,
27
(
10
), pp.
983
989
.10.1016/j.dental.2011.06.004
22.
Walker
,
M. P.
,
Haj-Ali
,
R.
,
Wang
,
Y.
,
Hunziker
,
D.
, and
Williams
,
K. B.
,
2006
, “
Influence of Environmental Conditions on Dental Composite Flexural Properties
,”
Dent. Mater.
,
22
(
11
), pp.
1002
1007
.10.1016/j.dental.2005.11.023
23.
Draughn
,
R. A.
,
1981
, “
Effects of Temperature on Mechanical Properties of Composite Dental Restorative Materials
,”
J. Biomed. Mater. Res.
,
15
(
4
), pp.
489
495
.10.1002/jbm.820150405
24.
Yiu
,
C. K. Y.
,
King
,
N. M.
,
Carrilho
,
M. R. O.
,
Sauro
,
S.
,
Rueggeberg
,
F. A.
,
Prati
,
C.
,
Carvalho
,
R. M.
,
Pashley
,
D. H.
, and
Tay
,
F. R.
,
2006
, “
Effect of Resin Hydrophilicity and Temperature on Water Sorption of Dental Adhesive Resins
,”
Biomaterials
,
27
(
9
), pp.
1695
1703
.10.1016/j.biomaterials.2005.09.037
25.
Ferracane
,
J. L.
,
2006
, “
Hygroscopic and Hydrolytic Effects in Dental Polymer Networks
,”
Dent. Mater.
,
22
(
3
), pp.
211
222
.10.1016/j.dental.2005.05.005
26.
Huang
,
G.
, and
Sun
,
H.
,
2007
, “
Effect of Water Absorption on the Mechanical Properties of Glass/Polyester Composites
,”
Mater. Des.
,
28
(
5
), pp.
1647
1650
.10.1016/j.matdes.2006.03.014
27.
Gautier
,
L.
,
Mortaigne
,
B.
,
Bellenger
,
V.
, and
Verdu
,
J.
,
2000
, “
Osmotic Cracking Nucleation in Hydrothermal-Aged Polyester Matrix
,”
Polymer
,
41
(
7
), pp.
2481
2490
.10.1016/S0032-3861(99)00383-3
28.
Lagouvardos
,
P. E.
,
Pissis
,
P.
,
Kyritsis
,
A.
, and
Daoukaki
,
D.
,
2003
, “
Water Sorption and Water-Induced Molecular Mobility in Dental Composite Resins
,”
J. Mater. Sci.: Mater. Med.
,
14
(
9
), pp.
753
759
.10.1023/A:1025080103857
29.
Musto
,
P.
,
Ragosta
,
G.
,
Scarinzi
,
G.
, and
Mascia
,
L.
,
2002
, “
Probing the Molecular Interactions in the Diffusion of Water Through Epoxy and Epoxy-Bismaleimide Networks
,”
J. Polym. Sci., Part B: Polym. Phys.
,
40
(
10
), pp.
922
938
.10.1002/polb.10147
30.
Cotugno
,
S.
,
Larobina
,
D.
,
Mensitieri
,
G.
,
Musto
,
P.
, and
Ragosta
,
G.
,
2001
, “
A Novel Spectroscopic Approach to Investigate Transport Processes in Polymers: The Case of Water-Epoxy System
,”
Polymer
,
42
(
15
), pp.
6431
6438
.10.1016/S0032-3861(01)00096-9
31.
Sideridou
,
I.
,
Tserki
,
V.
, and
Papanastasiou
,
G.
,
2003
, “
Study of Water Sorption, Solubility and Modulus of Elasticity of Light-Cured Dimethacrylate-Based Dental Resins
,”
Biomaterials
,
24
(
4
), pp.
655
665
.10.1016/S0142-9612(02)00380-0
32.
Palin
,
W. M.
,
Fleming
,
G. J. P.
,
Burke
,
F. J. T.
,
Marquis
,
P. M.
, and
Randall
,
R. C.
,
2005
, “
The Influence of Short and Medium-Term Water Immersion on the Hydrolytic Stability of Novel Low-Shrink Dental Composites
,”
Dent. Mater.
,
21
(
9
), pp.
852
863
.10.1016/j.dental.2005.01.004
33.
Lempel
,
E.
,
Czibulya
,
Z.
,
Kunsági-Máté
,
S.
,
Szalma
,
J.
,
Sümegi
,
B.
, and
Böddi
,
K.
,
2014
, “
Quantification of Conversion Degree and Monomer Elution From Dental Composite Using HPLC and Micro-Raman Spectroscopy
,”
Chromatographia
,
77
(
17–18
), pp.
1137
1144
.10.1007/s10337-014-2647-3
34.
Polydorou
,
O.
,
König
,
A.
,
Hellwig
,
E.
, and
Kümmerer
,
K.
,
2009
, “
Long-Term Release of Monomers From Modern Dental-Composite Materials
,”
Eur. J. Oral Sci.
,
117
(
1
), pp.
68
75
.10.1111/j.1600-0722.2008.00594.x
35.
Ferracane
,
J. L.
, and
Condon
,
J. R.
,
1990
, “
Rate of Elution of Leachable Components From Composite
,”
Dent. Mater.
,
6
(
4
), pp.
282
287
.10.1016/S0109-5641(05)80012-0
36.
Aydınoğlu
,
A.
, and
Yoruç
,
A. B. H.
,
2017
, “
Effects of Silane-Modified Fillers on Properties of Dental Composite Resin
,”
Mater. Sci. Eng., C
,
79
, pp.
382
389
.10.1016/j.msec.2017.04.151
37.
Drummond
,
J. L.
,
Andronova
,
K.
,
Al-Turki
,
L. I.
, and
Slaughter
,
L. D.
,
2004
, “
Leaching and Mechanical Properties Characterization of Dental Composites
,”
J. Biomed. Mater. Res., Part B
,
71B
(
1
), pp.
172
180
.10.1002/jbm.b.30074
38.
Söderholm
,
K. J. M.
,
Mukherjee
,
R.
, and
Longmate
,
J.
,
1996
, “
Filler Leachability of Composites Stored in Distilled Water or Artificial Saliva
,”
J. Dent. Res.
,
75
(
9
), pp.
1692
1699
.10.1177/00220345960750091201
39.
Söderholm
,
K. J. M.
,
Yang
,
M. C. K.
, and
Garcea
,
I.
,
2000
, “
Filler Particle Leachability of Experimental Dental Composites
,”
Eur. J. Oral Sci.
,
108
(
6
), pp.
555
560
.10.1034/j.1600-0722.2000.00919.x
40.
Karabela
,
M. M.
, and
Sideridou
,
I. D.
,
2008
, “
Effect of the Structure of Silane Coupling Agent on Sorption Characteristics of Solvents by Dental Resin-Nanocomposites
,”
Dent. Mater.
,
24
(
12
), pp.
1631
1639
.10.1016/j.dental.2008.02.021
41.
Braden
,
M.
,
Causton
,
E. E.
, and
Clarke
,
R. L.
,
1976
, “
Diffusion of Water in Composite Filling Materials
,”
J. Dent. Res.
,
55
(
5
), pp.
730
732
.10.1177/00220345760550050501
42.
Vuković
,
F.
, and
Walsh
,
T. R.
,
2020
, “
Moisture Ingress at the Molecular Scale in Hygrothermal Aging of Fiber-Epoxy Interfaces
,”
ACS Appl. Mater. Interfaces
,
12
(
49
), pp.
55278
55289
.10.1021/acsami.0c17027
43.
Martínez-Reina
,
J.
,
Reina
,
I.
,
Domínguez
,
J.
, and
García-Aznar
,
J. M.
,
2014
, “
A Bone Remodelling Model Including the Effect of Damage on the Steering of BMUs
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
99
112
.10.1016/j.jmbbm.2013.12.025
44.
Zhang
,
Y.
, and
Xu
,
J.
,
2008
, “
Effect of Immersion in Various Media on the Sorption, Solubility, Elution of Unreacted Monomers, and Flexural Properties of Two Model Dental Composite Compositions
,”
J. Mater. Sci.: Mater. Med.
,
19
(
6
), pp.
2477
2483
.10.1007/s10856-008-3369-6
45.
Alshali
,
R. Z.
,
Salim
,
N. A.
,
Satterthwaite
,
J. D.
, and
Silikas
,
N.
,
2015
, “
Long-Term Sorption and Solubility of Bulk-Fill and Conventional Resin-Composites in Water and Artificial Saliva
,”
J. Dent.
,
43
(
12
), pp.
1511
1518
.10.1016/j.jdent.2015.10.001
46.
Pytko-Polonczyk
,
J.
,
Jakubik
,
A.
,
Przeklasa-Bierowiec
,
A.
, and
Muszynska
,
B.
,
2017
, “
Artificial Saliva and Its Use in Biological Experiments
,”
J. Physiol. Pharmacol.
,
68
(
6
), pp.
807
813
.https://pubmed.ncbi.nlm.nih.gov/29550792/
47.
Da Veiga
,
A. M. A.
,
Cunha
,
A. C.
,
Ferreira
,
D. M. T. P.
,
da Silva Fidalgo
,
T. K.
,
Chianca
,
T. K.
,
Reis
,
K. R.
, and
Maia
,
L. C.
,
2016
, “
Longevity of Direct and Indirect Resin Composite Restorations in Permanent Posterior Teeth: A Systematic Review and Meta-Analysis
,”
J. Dent.
,
54
, pp.
1
12
.10.1016/j.jdent.2016.08.003
48.
Nedeljkovic
,
I.
,
De Munck
,
J.
,
Vanloy
,
A.
,
Declerck
,
D.
,
Lambrechts
,
P.
,
Peumans
,
M.
,
Teughels
,
W.
,
Van Meerbeek
,
B.
, and
Van Landuyt
,
K. L.
,
2020
, “
Secondary Caries: Prevalence, Characteristics, and Approach
,”
Clin. Oral Invest.
,
24
(
2
), pp.
683
691
.10.1007/s00784-019-02894-0
You do not currently have access to this content.