Abstract

Reliably and accurately estimating joint/segmental kinematics from optical motion capture data has remained challenging. Studies objectively characterizing human movement patterns have typically involved inverse kinematics and inverse dynamics techniques. Subsequent research has included scaled cadaver-based musculoskeletal (MSK) modeling for noninvasively estimating joint and muscle loads. As one of the ways to enhance confidence in the validity of MSK model predictions, the kinematics from the preceding step that drives such a model needs to be checked for agreement or compared with established/widely used models. This study rigorously compares the upper extremity (UE) joint kinematics calculated by the Dutch Shoulder Model implemented in the AnyBody Managed Model Repository (involving multibody kinematics optimization (MKO)) with those estimated by the Vicon Plug-in Gait model (involving single-body kinematics optimization (SKO)). Ten subjects performed three trials of (different types of) reaching tasks in a three-dimensional marker-based optical motion capture laboratory setting. Joint angles, processed marker trajectories, and reconstruction residuals corresponding to both models were compared. Scatter plots and Bland–Altman plots were used to assess the agreement between the two model outputs. Results showed the largest differences between the two models for shoulder, followed by elbow and wrist, with all root-mean-squared differences less than 10 deg (although this limit might be unacceptable for clinical use). Strong-to-excellent Spearman's rank correlation coefficients were found between the two model outputs. The Bland–Altman plots showed a good agreement between most of the outputs. In conclusion, results indicate that these two models with different kinematic algorithms broadly agree with each other, albeit with few key differences.

References

1.
Cappozzo
,
A.
,
Della Croce
,
U.
,
Leardini
,
A.
, and
Chiari
,
L.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry: Part 1: Theoretical Background
,”
Gait Posture
,
21
(
2
), pp.
186
196
.10.1016/S0966-6362(04)00025-6
2.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M.
, and
Della Croce
,
U.
,
1996
, “
Position and Orientation in Space of Bones During Movement: Experimental Artefacts
,”
Clin. Biomech.
,
11
(
2
), pp.
90
100
.10.1016/0268-0033(95)00046-1
3.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
4.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
De Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
5.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
6.
Riemer
,
R.
,
Hsiao-Wecksler
,
E. T.
, and
Zhang
,
X.
,
2008
, “
Uncertainties in Inverse Dynamics Solutions: A Comprehensive Analysis and an Application to Gait
,”
Gait Posture
,
27
(
4
), pp.
578
588
.10.1016/j.gaitpost.2007.07.012
7.
Roelker
,
S. A.
,
Caruthers
,
E. J.
,
Baker
,
R. K.
,
Pelz
,
N. C.
,
Chaudhari
,
A. M.
, and
Siston
,
R. A.
,
2017
, “
Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models
,”
Ann. Biomed. Eng.
,
45
(
11
), pp.
2635
2647
.10.1007/s10439-017-1894-5
8.
Myers
,
C. A.
,
Laz
,
P. J.
,
Shelburne
,
K. B.
, and
Davidson
,
B. S.
,
2015
, “
A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations
,”
Ann. Biomed. Eng.
,
43
(
5
), pp.
1098
1111
.10.1007/s10439-014-1181-7
9.
Begon
,
M.
,
Andersen
,
M. S.
, and
Dumas
,
R.
,
2018
, “
Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
030801
.10.1115/1.4038741
10.
Mantovani
,
G.
, and
Lamontagne
,
M.
,
2017
, “
How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework
,”
ASME J. Biomech. Eng.
,
139
(
4
), p.
044503
.10.1115/1.4034708
11.
Cereatti
,
A.
,
Bonci
,
T.
,
Akbarshahi
,
M.
,
Aminian
,
K.
,
Barré
,
A.
,
Begon
,
M.
,
Benoit
,
D. L.
,
Charbonnier
,
C.
,
Dal Maso
,
F.
,
Fantozzi
,
S.
,
Lin
,
C.-C.
,
Lu
,
T.-W.
,
Pandy
,
M. G.
,
Stagni
,
R.
,
van den Bogert
,
A. J.
, and
Camomilla
,
V.
,
2017
, “
Standardization Proposal of Soft Tissue Artefact Description for Data Sharing in Human Motion Measurements
,”
J. Biomech.
,
62
, pp.
5
13
.10.1016/j.jbiomech.2017.02.004
12.
Camomilla
,
V.
,
Dumas
,
R.
, and
Cappozzo
,
A.
,
2017
, “
Human Movement Analysis: The Soft Tissue Artefact Issue
,”
J. Biomech.
,
62
, pp.
1
4
.10.1016/j.jbiomech.2017.09.001
13.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is my Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.10.1115/1.4029304
14.
Rau
,
G.
,
Disselhorst-Klug
,
C.
, and
Schmidt
,
R.
,
2000
, “
Movement Biomechanics Goes Upwards: From the Leg to the Arm
,”
J. Biomech.
,
33
(
10
), pp.
1207
1216
.10.1016/S0021-9290(00)00062-2
15.
Anglin
,
C.
, and
Wyss
,
U. P.
,
2000
, “
Arm Motion and Load Analysis of Sit-to-Stand, Stand-to-Sit, Cane Walking and Lifting
,”
Clin. Biomech.
,
15
(
6
), pp.
441
448
.10.1016/S0268-0033(99)00093-5
16.
Lathrop
,
R. L.
,
Chaudhari
,
A. M.
, and
Siston
,
R. A.
,
2011
, “
Comparative Assessment of Bone Pose Estimation Using Point Cluster Technique and OpenSim
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
114503
.10.1115/1.4005409
17.
Lu
,
T.-W.
, and
O'connor
,
J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.10.1016/S0021-9290(98)00158-4
18.
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2010
, “
Influence of Joint Constraints on Lower Limb Kinematics Estimation From Skin Markers Using Global Optimization
,”
J. Biomech.
,
43
(
14
), pp.
2858
2862
.10.1016/j.jbiomech.2010.06.010
19.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.10.1080/10255840802459412
20.
Roux
,
E.
,
Bouilland
,
S.
,
Godillon-Maquinghen
,
A.-P.
, and
Bouttens
,
D.
,
2002
, “
Evaluation of the Global Optimisation Method Within the Upper Limb Kinematics Analysis
,”
J. Biomech.
,
35
(
9
), pp.
1279
1283
.10.1016/S0021-9290(02)00088-X
21.
Duprey
,
S.
,
Naaim
,
A.
,
Moissenet
,
F.
,
Begon
,
M.
, and
Chèze
,
L.
,
2017
, “
Kinematic Models of the Upper Limb Joints for Multibody Kinematics Optimisation: An Overview
,”
J. Biomech.
,
62
, pp.
87
94
.10.1016/j.jbiomech.2016.12.005
22.
Leardini
,
A.
,
Chiari
,
L.
,
Della Croce
,
U.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry: Part 3. Soft Tissue Artifact Assessment and Compensation
,”
Gait Posture
,
21
(
2
), pp.
212
225
.10.1016/j.gaitpost.2004.05.002
23.
Peters
,
A.
,
Galna
,
B.
,
Sangeux
,
M.
,
Morris
,
M.
, and
Baker
,
R.
,
2010
, “
Quantification of Soft Tissue Artifact in Lower Limb Human Motion Analysis: A Systematic Review
,”
Gait Posture
,
31
(
1
), pp.
1
8
.10.1016/j.gaitpost.2009.09.004
24.
Riley
,
P. O.
,
Franz
,
J.
,
Dicharry
,
J.
, and
Kerrigan
,
D. C.
,
2010
, “
Changes in Hip Joint Muscle–Tendon Lengths With Mode of Locomotion
,”
Gait Posture
,
31
(
2
), pp.
279
283
.10.1016/j.gaitpost.2009.11.005
25.
Arnold
,
A. S.
,
Salinas
,
S.
,
Hakawa
,
D. J.
, and
Delp
,
S. L.
,
2000
, “
Accuracy of Muscle Moment Arms Estimated From MRI-Based Musculoskeletal Models of the Lower Extremity
,”
Comput. Aided Surg.
,
5
(
2
), pp.
108
119
.10.3109/10929080009148877
26.
Morgan
,
K. D.
,
Donnelly
,
C. J.
, and
Reinbolt
,
J. A.
,
2014
, “
Elevated Gastrocnemius Forces Compensate for Decreased Hamstrings Forces During the Weight-Acceptance Phase of Single-Leg Jump Landing: Implications for Anterior Cruciate Ligament Injury Risk
,”
J. Biomech.
,
47
(
13
), pp.
3295
3302
.10.1016/j.jbiomech.2014.08.016
27.
Modenese
,
L.
,
Gopalakrishnan
,
A.
, and
Phillips
,
A.
,
2013
, “
Application of a Falsification Strategy to a Musculoskeletal Model of the Lower Limb and Accuracy of the Predicted Hip Contact Force Vector
,”
J. Biomech.
,
46
(
6
), pp.
1193
1200
.10.1016/j.jbiomech.2012.11.045
28.
Begon
,
M.
,
Wieber
,
P.-B.
, and
Yeadon
,
M. R.
,
2008
, “
Kinematics Estimation of Straddled Movements on High Bar From a Limited Number of Skin Markers Using a Chain Model
,”
J. Biomech.
,
41
(
3
), pp.
581
586
.10.1016/j.jbiomech.2007.10.005
29.
Charlton
,
I. W.
,
Tate
,
P.
,
Smyth
,
P.
, and
Roren
,
L.
,
2004
, “
Repeatability of an Optimised Lower Body Model
,”
Gait Posture
,
20
(
2
), pp.
213
221
.10.1016/j.gaitpost.2003.09.004
30.
Groen
,
B. E.
,
Geurts
,
M.
,
Nienhuis
,
B.
, and
Duysens
,
J.
,
2012
, “
Sensitivity of the OLGA and VCM Models to Erroneous Marker Placement: Effects on 3D-Gait Kinematics
,”
Gait Posture
,
35
(
3
), pp.
517
521
.10.1016/j.gaitpost.2011.11.019
31.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
82
94
.10.1177/0954411911431516
32.
Kainz
,
H.
,
Modenese
,
L.
,
Lloyd
,
D.
,
Maine
,
S.
,
Walsh
,
H.
, and
Carty
,
C.
,
2016
, “
Joint Kinematic Calculation Based on Clinical Direct Kinematic Versus Inverse Kinematic Gait Models
,”
J. Biomech.
,
49
(
9
), pp.
1658
1669
.10.1016/j.jbiomech.2016.03.052
33.
Begon
,
M.
,
Bélaise
,
C.
,
Naaim
,
A.
,
Lundberg
,
A.
, and
Chèze
,
L.
,
2017
, “
Multibody Kinematics Optimization With Marker Projection Improves the Accuracy of the Humerus Rotational Kinematics
,”
J. Biomech.
,
62
, pp.
117
123
.10.1016/j.jbiomech.2016.09.046
34.
Seth
,
A.
,
Matias
,
R.
,
Veloso
,
A. P.
, and
Delp
,
S. L.
,
2016
, “
A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics During Shoulder Movements
,”
PLoS One
,
11
(
1
), p.
e0141028
.10.1371/journal.pone.0141028
35.
Charbonnier
,
C.
,
Chague
,
S.
,
Kolo
,
F.
,
Chow
,
J.
, and
Lädermann
,
A.
,
2014
, “
A Patient-Specific Measurement Technique to Model Shoulder Joint Kinematics
,”
Orthop. Traumatol.: Surg. Res.
,
100
(
7
), pp.
715
719
.10.1016/j.otsr.2014.06.015
36.
Nagaraja
,
V. H.
,
Bergmann
,
J. H.
,
Andersen
,
M. S.
, and
Thompson
,
M. S.
,
2018
, “
Compensatory Movements Involved During Simulated Upper Limb Prosthetic Usage: Reach Task vs. Reach-to-Grasp Task
,”
XV ISB International Symposium on 3-D Analysis of Human Movement,
International Society of Biomechanics, Salford, Greater Manchester, UK, July
3
6
.https://www.researchgate.net/publication/344365249_Compensatory_Movements_Involved_During_Simulated_Upper_Limb_Prosthetic_Usage_Reach_Task_vs_Reach-to-Grasp_Task
37.
Vicon Motion Systems
,
2022
, “
Plug-in Gait Reference Guide—Vicon Documentation
,” Vicon Motion Systems, Oxford, UK, accessed Apr. 12, 2022, https://docs.vicon.com/display/Nexus212/Plug-in+Gait+Reference+Guide
38.
The AnyBody Modeling System,
2021
, “
AnyBody Tutorials
,” AnyBody Technology A/S, Aalborg, Denmark, accessed Nov. 20, 2021, https://anyscript.org/tutorials/
39.
Vicon Motion Systems
,
2022
, “
Vicon Nexus | Software for Motion Capture in Life Sciences | Vicon
,” Vicon Motion Systems, Oxford, UK, accessed Apr. 12, 2022, https://www.vicon.com/software/nexus/?section=downloads
40.
Pinzone
,
O.
,
Schwartz
,
M. H.
,
Thomason
,
P.
, and
Baker
,
R.
,
2014
, “
The Comparison of Normative Reference Data From Different Gait Analysis Services
,”
Gait Posture
,
40
(
2
), pp.
286
290
.10.1016/j.gaitpost.2014.03.185
41.
Schwartz
,
M. H.
,
Rozumalski
,
A.
, and
Trost
,
J. P.
,
2008
, “
The Effect of Walking Speed on the Gait of Typically Developing Children
,”
J. Biomech.
,
41
(
8
), pp.
1639
1650
.10.1016/j.jbiomech.2008.03.015
42.
Davis
,
R. B.
, III
,
Ounpuu
,
S.
,
Tyburski
,
D.
, and
Gage
,
J. R.
,
1991
, “
A Gait Analysis Data Collection and Reduction Technique
,”
Human Movement Sci.
,
10
(
5
), pp.
575
587
.10.1016/0167-9457(91)90046-Z
43.
Kadaba
,
M.
,
Ramakrishnan
,
H.
, and
Wootten
,
M.
,
1990
, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
(
3
), pp.
383
392
.10.1002/jor.1100080310
44.
McGinley
,
J. L.
,
Baker
,
R.
,
Wolfe
,
R.
, and
Morris
,
M. E.
,
2009
, “
The Reliability of Three-Dimensional Kinematic Gait Measurements: A Systematic Review
,”
Gait Posture
,
29
(
3
), pp.
360
369
.10.1016/j.gaitpost.2008.09.003
45.
Schwartz
,
M.
, and
Dixon
,
P. C.
,
2018
, “
The Effect of Subject Measurement Error on Joint Kinematics in the Conventional Gait Model: Insights From the Open-Source pyCGM Tool Using High Performance Computing Methods
,”
PLoS One
,
13
(
1
), p.
e0189984
.10.1371/journal.pone.0189984
46.
Vicon,
2022
, “
Angle Definitions—Nexus 2.5 Documentation—Vicon Documentation
,” Vicon Motion Systems, Oxford, UK, accessed Apr. 12, 2022, https://docs.vicon.com/display/Nexus25/Angle+definitions
47.
Van der Helm
,
F. C.
,
1994
, “
A Finite Element Musculoskeletal Model of the Shoulder Mechanism
,”
J. Biomech.
,
27
(
5
), pp.
551
569
.10.1016/0021-9290(94)90065-5
48.
De Zee
,
M.
,
Hansen
,
L.
,
Wong
,
C.
,
Rasmussen
,
J.
, and
Simonsen
,
E. B.
,
2007
, “
A Generic Detailed Rigid-Body Lumbar Spine Model
,”
J. Biomech.
,
40
(
6
), pp.
1219
1227
.10.1016/j.jbiomech.2006.05.030
49.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.10.1080/10255840903067080
50.
Begon
,
M.
,
Dal Maso
,
F.
,
Arndt
,
A.
, and
Monnet
,
T.
,
2015
, “
Can Optimal Marker Weightings Improve Thoracohumeral Kinematics Accuracy?
,”
J. Biomech.
,
48
(
10
), pp.
2019
2025
.10.1016/j.jbiomech.2015.03.023
51.
Barre
,
A.
, and
Armand
,
S.
,
2014
, “
Biomechanical ToolKit: Open-Source Framework to Visualize and Process Biomechanical Data
,”
Comput. Methods Programs Biomed.
,
114
(
1
), pp.
80
87
.10.1016/j.cmpb.2014.01.012
52.
Jarque
,
C. M.
, and
Bera
,
A. K.
,
1980
, “
Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals
,”
Econ. Lett.
,
6
(
3
), pp.
255
259
.10.1016/0165-1765(80)90024-5
53.
Wilcoxon
,
F.
,
1992
, “
Individual Comparisons by Ranking Methods
,”
Breakthroughs in Statistics
,
Springer-Verlag
, New York, pp.
196
202
.
54.
Bland
,
J. M.
, and
Altman
,
D. G.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
327
(
8476
), pp.
307
310
.10.1016/S0140-6736(86)90837-8
55.
McLaughlin
,
P.
,
2013
, “
Testing Agreement Between a New Method and the Gold Standard-How Do We Test?
,”
J. Biomech.
,
46
(
16
), pp.
2757
2760
.10.1016/j.jbiomech.2013.08.015
56.
Robinson
,
M. A.
,
Donnelly
,
C. J.
,
Tsao
,
J.
, and
Vanrenterghem
,
J.
,
2014
, “
Impact of Knee Modeling Approach on Indicators and Classification of ACL Injury Risk
,”
Med. Sci. Sports Exercise
,
46
(
7
), pp.
1269
1276
.10.1249/MSS.0000000000000236
57.
Taylor
,
R.
,
1990
, “
Interpretation of the Correlation Coefficient: A Basic Review
,”
J. Diagn. Med. Sonography
,
6
(
1
), pp.
35
39
.10.1177/875647939000600106
58.
Piazza
,
S. J.
, and
Cavanagh
,
P. R.
,
2000
, “
Measurement of the Screw-Home Motion of the Knee is Sensitive to Errors in Axis Alignment
,”
J. Biomech.
,
33
(
8
), pp.
1029
1034
.10.1016/S0021-9290(00)00056-7
59.
Giavarina
,
D.
,
2015
, “
Understanding Bland Altman Analysis
,”
Biochem. Med.
,
25
(
2
), pp.
141
151
.10.11613/BM.2015.015
60.
Cereatti
,
A.
,
Della Croce
,
U.
, and
Cappozzo
,
A.
,
2006
, “
Reconstruction of Skeletal Movement Using Skin Markers: Comparative Assessment of Bone Pose Estimators
,”
J. Neuroeng. Rehabil.
,
3
(
1
), pp.
1
12
.10.1186/1743-0003-3-7
61.
Stagni
,
R.
,
Fantozzi
,
S.
, and
Cappello
,
A.
,
2009
, “
Double Calibration vs. Global Optimisation: Performance and Effectiveness for Clinical Application
,”
Gait Posture
,
29
(
1
), pp.
119
122
.10.1016/j.gaitpost.2008.07.008
62.
Andersen
,
M. S.
,
Benoit
,
D. L.
,
Damsgaard
,
M.
,
Ramsey
,
D. K.
, and
Rasmussen
,
J.
,
2010
, “
Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? An In Vivo Study of Knee Kinematics
,”
J. Biomech.
,
43
(
2
), pp.
268
273
.10.1016/j.jbiomech.2009.08.034
63.
Magermans
,
D.
,
Chadwick
,
E.
,
Veeger
,
H.
, and
Van Der Helm
,
F.
,
2005
, “
Requirements for Upper Extremity Motions During Activities of Daily Living
,”
Clin. Biomech.
,
20
(
6
), pp.
591
599
.10.1016/j.clinbiomech.2005.02.006
64.
Laitenberger
,
M.
,
Raison
,
M.
,
Périé
,
D.
, and
Begon
,
M.
,
2015
, “
Refinement of the Upper Limb Joint Kinematics and Dynamics Using a Subject-Specific Closed-Loop Forearm Model
,”
Multibody Syst. Dyn.
,
33
(
4
), pp.
413
438
.10.1007/s11044-014-9421-z
65.
Chin
,
A.
,
Lloyd
,
D.
,
Alderson
,
J.
,
Elliott
,
B.
, and
Mills
,
P.
,
2010
, “
A Marker-Based Mean Finite Helical Axis Model to Determine Elbow Rotation Axes and Kinematics In Vivo
,”
J. Appl. Biomech.
,
26
(
3
), pp.
305
315
.10.1123/jab.26.3.305
66.
Chiari
,
L.
,
Della Croce
,
U.
,
Leardini
,
A.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry: Part 2: Instrumental Errors
,”
Gait Posture
,
21
(
2
), pp.
197
211
.10.1016/j.gaitpost.2004.04.004
67.
Della Croce
,
U.
,
Leardini
,
A.
,
Chiari
,
L.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry: Part 4: Assessment of Anatomical Landmark Misplacement and Its Effects on Joint Kinematics
,”
Gait Posture
,
21
(
2
), pp.
226
237
.10.1016/j.gaitpost.2004.05.003
68.
El Habachi
,
A.
,
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2013
, “
Global Sensitivity Analysis of the Kinematics Obtained With a Multi-Body Optimisation Using a Parallel Mechanism of the Shoulder
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
Suppl. 1
), pp.
61
62
.10.1080/10255842.2013.815907
69.
Puchaud
,
P.
,
Hybois
,
S.
,
Lombart
,
A.
,
Bascou
,
J.
,
Pillet
,
H.
,
Fodé
,
P.
, and
Sauret
,
C.
,
2019
, “
On the Influence of the Shoulder Kinematic Chain on Joint Kinematics and Musculotendon Lengths During Wheelchair Propulsion Estimated From Multibody Kinematics Optimization
,”
ASME J. Biomech. Eng.
,
141
(
10
), p.
101005
.10.1115/1.4043441
70.
Stagni
,
R.
,
Leardini
,
A.
,
Cappozzo
,
A.
,
Benedetti
,
M. G.
, and
Cappello
,
A.
,
2000
, “
Effects of Hip Joint Centre Mislocation on Gait Analysis Results
,”
J. Biomech.
,
33
(
11
), pp.
1479
1487
.10.1016/S0021-9290(00)00093-2
71.
Ojeda
,
J.
,
Martínez-Reina
,
J.
, and
Mayo
,
J.
,
2016
, “
The Effect of Kinematic Constraints in the Inverse Dynamics Problem in Biomechanics
,”
Multibody Syst. Dyn.
,
37
(
3
), pp.
291
309
.10.1007/s11044-016-9508-9
72.
Matsui
,
K.
,
Shimada
,
K.
, and
Andrew
,
P. D.
,
2006
, “
Deviation of Skin Marker From Bone Target During Movement of the Scapula
,”
J. Orthop. Sci.
,
11
(
2
), pp.
180
184
.10.1007/s00776-005-1000-y
73.
Richard
,
V.
,
Lamberto
,
G.
,
Lu
,
T.-W.
,
Cappozzo
,
A.
, and
Dumas
,
R.
,
2016
, “
Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study
,”
PLoS One
,
11
(
6
), p.
e0157010
.10.1371/journal.pone.0157010
74.
Holden
,
J. P.
,
Orsini
,
J. A.
,
Siegel
,
K. L.
,
Kepple
,
T. M.
,
Gerber
,
L. H.
, and
Stanhope
,
S. J.
,
1997
, “
Surface Movement Errors in Shank Kinematics and Knee Kinetics During Gait
,”
Gait Posture
,
5
(
3
), pp.
217
227
.10.1016/S0966-6362(96)01088-0
75.
Lund
,
M. E.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Rasmussen
,
J.
,
2015
, “
Scaling of Musculoskeletal Models From Static and Dynamic Trials
,”
Int. Biomech.
,
2
(
1
), pp.
1
11
.10.1080/23335432.2014.993706
76.
Lavaill
,
M.
,
Martelli
,
S.
,
Gilliland
,
L.
,
Gupta
,
A.
,
Kerr
,
G.
, and
Pivonka
,
P.
,
2022
, “
The Effects of Anatomical Errors on Shoulder Kinematics Computed Using Multi-Body Models
,”
Biomech. Model. Mechanobiol.
,
21
(
5
), pp.
1561
1572
.10.1007/s10237-022-01606-0
77.
Wu
,
G.
,
van der Helm
,
F. C.
,
(DirkJan) Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
78.
Dumas
,
R.
, and
Duprey
,
S.
,
2022
, “
Subject-Specific Model-Derived Kinematics of the Shoulder Based on Skin Markers During Arm Abduction Up to 180°—Assessment of 4 Gleno-Humeral Joint Models
,”
J. Biomech.
,
136
, p.
111061
.10.1016/j.jbiomech.2022.111061
79.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.10.1115/1.4029258
80.
Jia
,
R.
,
Mellon
,
S.
,
Monk
,
P.
,
Murray
,
D.
, and
Noble
,
J. A.
,
2016
, “
A Computer-Aided Tracking and Motion Analysis With Ultrasound (CAT & MAUS) System for the Description of Hip Joint Kinematics
,”
Int. J. Comput. Assisted Radiol. Surg.
,
11
(
11
), pp.
1965
1977
.10.1007/s11548-016-1443-y
You do not currently have access to this content.