Abstract

This study examines the theoretical foundations for the damage mechanics of biological tissues in relation to viscoelasticity. Its primary goal is to provide a mechanistic understanding of well-known experimental observations in biomechanics, which show that the ultimate tensile strength of viscoelastic biological tissues typically increases with increasing strain rate. The basic premise of this framework is that tissue damage occurs when strong bonds, such as covalent bonds in the solid matrix of a biological tissue, break in response to loading. This type of failure is described as elastic damage, under the idealizing assumption that strong bonds behave elastically. Viscoelasticity arises from three types of dissipative mechanisms: (1) Friction between molecules of the same species, which is represented by the tissue viscosity. (2) Friction between fluid and solid constituents of a porous medium, which is represented by the tissue hydraulic permeability. (3) Dissipative reactions arising from weak bonds breaking in response to loading, and reforming in a stress-free state, such as hydrogen bonds and other weak electrostatic bonds. When a viscoelastic tissue is subjected to loading, some of that load may be temporarily supported by those frictional and weak bond forces, reducing the amount of load supported by elastic strong bonds and thus, the extent of elastic damage sustained by those bonds. This protective effect depends on the characteristic time response of viscoelastic mechanisms in relation to the loading history. This study formalizes these concepts by presenting general equations that can model the damage mechanics of viscoelastic tissues.

References

1.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
(
4
), pp.
452
461
.10.1097/00007632-199602150-00009
2.
McElhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(
4
), pp.
1231
1236
.10.1152/jappl.1966.21.4.1231
3.
Burstein
,
A. H.
, and
Frankel
,
V. H.
,
1968
, “
The Viscoelastic Properties of Some Biological Materials
,”
Ann. N. Y. Acad. Sci.
,
146
, pp.
158
165
.10.1111/j.1749-6632.1968.tb20280.x
4.
Wood
,
J. L.
,
1971
, “
Dynamic Response of Human Cranial Bone
,”
J. Biomech.
,
4
(
1
), pp.
1
12
.10.1016/0021-9290(71)90010-8
5.
Currey
,
J. D.
,
1975
, “
The Effects of Strain Rate, Reconstruction and Mineral Content on Some Mechanical Properties of Bovine Bone
,”
J. Biomech.
,
8
(
1
), pp.
81
86
.10.1016/0021-9290(75)90046-9
6.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1976
, “
Bone Compressive Strength: The Influence of Density and Strain Rate
,”
Science
,
194
(
4270
), pp.
1174
1176
.10.1126/science.996549
7.
Wright
,
T. M.
, and
Hayes
,
W. C.
,
1976
, “
Tensile Testing of Bone Over a Wide Range of Strain Rates: Effects of Strain Rate, Microstructure and Density
,”
Med. Biol. Eng.
,
14
(
6
), pp.
671
680
.10.1007/BF02477046
8.
Kempson
,
G. E.
,
1982
, “
Relationship Between the Tensile Properties of Articular Cartilage From the Human Knee and Age
,”
Ann. Rheum. Dis.
,
41
(
5
), pp.
508
511
.10.1136/ard.41.5.508
9.
Williams
,
J. L.
,
Do
,
P. D.
,
Eick
,
J. D.
, and
Schmidt
,
T. L.
,
2001
, “
Tensile Properties of the Physis Vary With Anatomic Location, Thickness, Strain Rate and Age
,”
J. Orthop. Res.
,
19
(
6
), pp.
1043
1048
.10.1016/S0736-0266(01)00040-7
10.
Verteramo
,
A.
, and
Seedhom
,
B. B.
,
2004
, “
Zonal and Directional Variations in Tensile Properties of Bovine Articular Cartilage With Special Reference to Strain Rate Variation
,”
Biorheology
,
41
(
3–4
), pp.
203
13
.
11.
Noyes
,
F. R.
,
DeLucas
,
J. L.
, and
Torvik
,
P. J.
,
1974
, “
Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates
,”
J. Bone Jt. Surg. Am.
,
56
(
2
), pp.
236
253
.10.2106/00004623-197456020-00002
12.
Kennedy
,
J. C.
,
Hawkins
,
R. J.
,
Willis
,
R. B.
, and
Danylchuck
,
K. D.
,
1976
, “
Tension Studies of Human Knee Ligaments. Yield Point, Ultimate Failure, and Disruption of the Cruciate and Tibial Collateral Ligaments
,”
J. Bone Jt. Surg. Am.
,
58
(
3
), pp.
350
355
.10.2106/00004623-197658030-00009
13.
Bullough
,
P. G.
,
Munuera
,
L.
,
Murphy
,
J.
, and
Weinstein
,
A. M.
,
1970
, “
The Strength of the Menisci of the Knee as It Relates to Their Fine Structure
,”
J. Bone Jt. Surg. Br.
,
52-B
(
3
), pp.
564
570
.10.1302/0301-620X.52B3.564
14.
Arnoczky
,
S. P.
,
McDevitt
,
C. A.
,
Schmidt
,
M. B.
,
Mow
,
V. C.
, and
Warren
,
R. F.
,
1988
, “
The Effect of Cryopreservation on Canine Menisci: A Biochemical, Morphologic, and Biomechanical Evaluation
,”
J. Orthop. Res.
,
6
(
1
), pp.
1
12
.10.1002/jor.1100060102
15.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1989
, “
Material Properties of the Normal Medial Bovine Meniscus
,”
J. Orthop. Res.
,
7
(
6
), pp.
771
782
.10.1002/jor.1100070602
16.
Benedict
,
J. V.
,
Walker
,
L. B.
, and
Harris
,
E. H.
,
1968
, “
Stress-Strain Characteristics and Tensile Strength of Unembalmed Human Tendon
,”
J. Biomech.
,
1
(
1
), pp.
53
63
.10.1016/0021-9290(68)90038-9
17.
Galeski
,
A.
,
Kastelic
,
J.
,
Baer
,
E.
, and
Kohn
,
R. R.
,
1977
, “
Mechanical and Structural Changes in Rat Tail Tendon Induced by Alloxan Diabetes and Aging
,”
J. Biomech.
,
10
(
11–12
), pp.
775
782
.10.1016/0021-9290(77)90091-4
18.
Haut
,
R. C.
,
1983
, “
Age-Dependent Influence of Strain Rate on the Tensile Failure of Rat-Tail Tendon
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
296
299
.10.1115/1.3138422
19.
Kasra
,
M.
,
Parnianpour
,
M.
,
Shirazi-Adl
,
A.
,
Wang
,
J. L.
, and
Grynpas
,
M. D.
,
2004
, “
Effect of Strain Rate on Tensile Properties of Sheep Disc Anulus Fibrosus
,”
Technol. Health Care
,
12
(
4
), pp.
333
342
.10.3233/THC-2004-12405
20.
Werbner
,
B.
,
Spack
,
K.
, and
O'Connell
,
G. D.
,
2019
, “
Bovine Annulus Fibrosus Hydration Affects Rate-Dependent Failure Mechanics in Tension
,”
J. Biomech.
,
89
, pp.
34
39
.10.1016/j.jbiomech.2019.04.008
21.
Crowninshield
,
R. D.
, and
Pope
,
M. H.
,
1974
, “
The Response of Compact Bone in Tension at Various Strain Rates
,”
Ann. Biomed. Eng.
,
2
(
2
), pp.
217
225
.10.1007/BF02368492
22.
Crowninshield
,
R. D.
, and
Pope
,
M. H.
,
1976
, “
The Strength and Failure Characteristics of Rat Medial Collateral Ligaments
,”
J. Trauma
,
16
(
2
), pp.
99
105
.10.1097/00005373-197602000-00004
23.
Bonner
,
T. J.
,
Newell
,
N.
,
Karunaratne
,
A.
,
Pullen
,
A. D.
,
Amis
,
A. A.
,
Bull
,
A. M. J.
, and
Masouros
,
S. D.
,
2015
, “
Strain-Rate Sensitivity of the Lateral Collateral Ligament of the Knee
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
261
270
.10.1016/j.jmbbm.2014.07.004
24.
Woo
,
S. L.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
,
1990
, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
,
8
(
5
), pp.
712
721
.10.1002/jor.1100080513
25.
Karunaratne
,
A.
,
Li
,
S.
, and
Bull
,
A. M. J.
,
2018
, “
Nano-Scale Mechanisms Explain the Stiffening and Strengthening of Ligament Tissue With Increasing Strain Rate
,”
Sci. Rep.
,
8
(
1
), p.
3707
.10.1038/s41598-018-21786-z
26.
Beatty
,
M. W.
,
Bruno
,
M. J.
,
Iwasaki
,
L. R.
, and
Nickel
,
J. C.
,
2001
, “
Strain Rate Dependent Orthotropic Properties of Pristine and Impulsively Loaded Porcine Temporomandibular Joint Disk
,”
J. Biomed. Mater. Res.
,
57
(
1
), pp.
25
34
.10.1002/1097-4636(200110)57:1<25::AID-JBM1137>3.0.CO;2-H
27.
Yamamoto
,
N.
, and
Hayashi
,
K.
,
1998
, “
Mechanical Properties of Rabbit Patellar Tendon at High Strain Rate
,”
Biomed. Mater. Eng.
,
8
(
2
), pp.
83
90
.https://pubmed.ncbi.nlm.nih.gov/9830991/
28.
Wren
,
T. A.
,
Yerby
,
S. A.
,
Beaupré
,
G. S.
, and
Carter
,
D. R.
,
2001
, “
Mechanical Properties of the Human Achilles Tendon
,”
Clin. Biomech.
,
16
(
3
), pp.
245
251
.10.1016/S0268-0033(00)00089-9
29.
Ng
,
B. H.
,
Chou
,
S. M.
,
Lim
,
B. H.
, and
Chong
,
A.
,
2004
, “
Strain Rate Effect on the Failure Properties of Tendons
,”
Proc. Inst. Mech. Eng. H
,
218
(
3
), pp.
203
206
.10.1243/095441104323118923
30.
Robinson
,
P. S.
,
Lin
,
T. W.
,
Reynolds
,
P. R.
,
Derwin
,
K. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
,
2004
, “
Strain-Rate Sensitive Mechanical Properties of Tendon Fascicles From Mice With Genetically Engineered Alterations in Collagen and Decorin
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
252
257
.10.1115/1.1695570
31.
Blevins
,
F. T.
,
Hecker
,
A. T.
,
Bigler
,
G. T.
,
Boland
,
A. L.
, and
Hayes
,
W. C.
,
1994
, “
The Effects of Donor Age and Strain Rate on the Biomechanical Properties of Bone-Patellar Tendon-Bone Allografts
,”
Am. J. Sports Med.
,
22
(
3
), pp.
328
333
.10.1177/036354659402200306
32.
Lewis
,
G.
, and
Shaw
,
K. M.
,
1997
, “
Tensile Properties of Human Tendo Achillis: Effect of Donor Age and Strain Rate
,”
J. Foot Ankle Surg.
,
36
(
6
), pp.
435
445
.10.1016/S1067-2516(97)80096-8
33.
Haut
,
R. C.
,
1985
, “
The Effect of a Lathyritic Diet on the Sensitivity of Tendon to Strain Rate
,”
ASME J. Biomech. Eng.
,
107
(
2
), pp.
166
174
.10.1115/1.3138537
34.
Hansen
,
U.
,
Zioupos
,
P.
,
Simpson
,
R.
,
Currey
,
J. D.
, and
Hynd
,
D.
,
2008
, “
The Effect of Strain Rate on the Mechanical Properties of Human Cortical Bone
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011011
.10.1115/1.2838032
35.
Zioupos
,
P.
,
Hansen
,
U.
, and
Currey
,
J. D.
,
2008
, “
Microcracking Damage and the Fracture Process in Relation to Strain Rate in Human Cortical Bone Tensile Failure
,”
ASME J. Biomech.
,
41
(
14
), pp.
2932
2939
.10.1016/j.jbiomech.2008.07.025
36.
Simo
,
J.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.10.1016/0045-7825(87)90107-1
37.
Simo
,
J.
, and
Ju
,
J.
,
1987
, “
Strain-and Stress-Based Continuum Damage Models—I. Formulation
,”
Int. J. Solids Struct.
,
23
(
7
), pp.
821
840
.10.1016/0020-7683(87)90083-7
38.
Rausch
,
M. K.
,
Sugerman
,
G. P.
,
Kakaletsis
,
S.
, and
Dortdivanlioglu
,
B.
,
2021
, “
Hyper-Viscoelastic Damage Modeling of Whole Blood Clot Under Large Deformation
,”
Biomech. Model. Mechanobiol.
,
20
(
5
), pp.
1645
1657
.10.1007/s10237-021-01467-z
39.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(
26–27
), pp.
3455
3482
.10.1016/S0020-7683(97)00217-5
40.
Kachanov
,
L.
,
1958
, “
Time of the Rupture Process Under Creep Conditions
,”
Isv. Akad. Nauk SSSR. Otd. Tekh. Nauk
,
8
, pp.
26
31
.
41.
Rabotnov
,
Y. N.
,
1980
,
Elements of Hereditary Solid Mechanics
,
Mir Publishers
,
Moscow, Russia
.
42.
Chaboche
,
J.-L.
,
1981
, “
Continuous Damage Mechanics—a Tool to Describe Phenomena Before Crack Initiation
,”
Nucl. Eng. Des.
,
64
(
2
), pp.
233
247
.10.1016/0029-5493(81)90007-8
43.
Lemaitre
,
J.
,
1984
, “
How to Use Damage Mechanics
,”
Nucl. Eng. Des.
,
80
(
2
), pp.
233
245
.10.1016/0029-5493(84)90169-9
44.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater.-Technol. ASME
,
107
(
1
), pp.
83
89
.10.1115/1.3225775
45.
Nims
,
R. J.
,
Durney
,
K. M.
,
Cigan
,
A. D.
,
Dusséaux
,
A.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2016
, “
Continuum Theory of Fibrous Tissue Damage Mechanics Using Bond Kinetics: Application to Cartilage Tissue Engineering
,”
Interface Focus
,
6
(
1
), p.
20150063
.10.1098/rsfs.2015.0063
46.
Nims
,
R. J.
, and
Ateshian
,
G. A.
,
2017
, “
Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues
,”
J. Elasticity
,
129
(
1–2
), pp.
69
105
.10.1007/s10659-017-9630-9
47.
Ateshian
,
G. A.
, and
Zimmerman
,
B. K.
,
2022
, “
Continuum Thermodynamics of Constrained Reactive Mixtures
,”
ASME J. Biomech. Eng.
,
144
(
4
), p.
041011
.10.1115/1.4053084
48.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
,
2012
,
Fundamentals of Machine Component Design
, 5th ed.,
Wiley
,
Hoboken, NJ
.
49.
Zavatsky
,
A. B.
, and
Wright
,
H. J.
,
2001
, “
Injury Initiation and Progression in the Anterior Cruciate Ligament
,”
Clin. Biomech.
,
16
(
1
), pp.
47
53
.10.1016/S0268-0033(00)00066-8
50.
Cater
,
H. L.
,
Sundstrom
,
L. E.
, and
Morrison
,
B.
, 3rd
,
2006
, “
Temporal Development of Hippocampal Cell Death is Dependent on Tissue Strain but Not Strain Rate
,”
J. Biomech.
,
39
(
15
), pp.
2810
2818
.10.1016/j.jbiomech.2005.09.023
51.
Schileo
,
E.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2008
, “
Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion Are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In Vitro
,”
J. Biomech.
,
41
(
2
), pp.
356
367
.10.1016/j.jbiomech.2007.09.009
52.
Volokh
,
K. Y.
,
2010
, “
Comparison of Biomechanical Failure Criteria for Abdominal Aortic Aneurysm
,”
J. Biomech.
,
43
(
10
), pp.
2032
2034
.10.1016/j.jbiomech.2010.03.024
53.
Wright
,
R. M.
,
Post
,
A.
,
Hoshizaki
,
B.
, and
Ramesh
,
K. T.
,
2013
, “
A Multiscale Computational Approach to Estimating Axonal Damage Under Inertial Loading of the Head
,”
J. Neurotrauma
,
30
(
2
), pp.
102
118
.10.1089/neu.2012.2418
54.
Albogha
,
M. H.
,
Kitahara
,
T.
,
Todo
,
M.
,
Hyakutake
,
H.
, and
Takahashi
,
I.
,
2016
, “
Maximum Principal Strain as a Criterion for Prediction of Orthodontic Mini-Implants Failure in Subject-Specific Finite Element Models
,”
Angle Orthod.
,
86
(
1
), pp.
24
31
.10.2319/120514-875.1
55.
Linka
,
K.
, and
Itskov
,
M.
,
2016
, “
Mechanics of Collagen Fibrils: A Two-Scale Discrete Damage Model
,”
J. Mech. Behav. Biomed. Mater.
,
58
, pp.
163
172
.10.1016/j.jmbbm.2015.08.045
56.
Huang
,
C.-Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
2005
, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
,
38
(
4
), pp.
799
809
.10.1016/j.jbiomech.2004.05.006
57.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.10.1007/BF01262690
58.
Cryer
,
C.
,
1963
, “
A Comparison of the Three-Dimensional Consolidation Theories of Biot and Terzaghi
,”
Q. J. Mech. Appl. Math.
,
16
(
4
), pp.
401
412
.10.1093/qjmam/16.4.401
59.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys.
,
14
(
2
), pp.
227
241
.10.1029/RG014i002p00227
60.
Mow
,
V.
,
Kuei
,
S.
,
Lai
,
W.
, and
Armstrong
,
C.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
61.
Green
,
M.
, and
Tobolsky
,
A.
,
1946
, “
A New Approach to the Theory of Relaxing Polymeric Media
,”
J. Chem. Phys.
,
14
(
2
), pp.
80
92
.10.1063/1.1724109
62.
Tobolsky
,
A. V.
,
1960
,
Properties and Structure of Polymers
,
Wiley & Sons Inc
.,
New York and London
.
63.
Ateshian
,
G. A.
,
2015
, “
Viscoelasticity Using Reactive Constrained Solid Mixtures
,”
J. Biomech.
,
48
(
6
), pp.
941
947
.10.1016/j.jbiomech.2015.02.019
64.
Ateshian
,
G. A.
,
Petersen
,
C. A.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2023
, “
A Numerical Scheme for Anisotropic Reactive Nonlinear Viscoelasticity
,”
ASME J. Biomech. Eng.
, 145(1), p.
011004
.10.1115/1.4054983
65.
Bland
,
D. R.
,
1960
, “
The Theory of Linear Viscoelasticity
,”
International Series of Monographs on Pure and Applied Mathematics
, Vol.
10
,
Pergamon Press
,
Oxford, UK
.
66.
Coleman
,
B. D.
, and
Noll
,
W.
,
1961
, “
Foundations of Linear Viscoelasticity
,”
Rev. Mod. Phys.
,
33
(
2
), pp.
239
249
.10.1103/RevModPhys.33.239
67.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
68.
Ateshian
,
G. A.
,
2017
, “
Mixture Theory for Modeling Biological Tissues: Illustrations From Articular Cartilage
,”
Biomechanics: Trends in Modeling and Simulation
, Springer International Publishing, Switzerland, pp.
1
51
.
69.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.10.1063/1.1711937
70.
Lubliner
,
J.
,
1985
, “
A Model of Rubber Viscoelasticity
,”
Mech. Res. Commun.
,
12
(
2
), pp.
93
99
.10.1016/0093-6413(85)90075-8
71.
Holzapfel
,
G. A.
, and
Simo
,
J. C.
,
1996
, “
A New Viscoelastic Constitutive Model for Continuous Media at Finite Thermomechanical Changes
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
3019
3034
.10.1016/0020-7683(95)00263-4
72.
Puso
,
M.
, and
Weiss
,
J.
,
1998
, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
62
70
.10.1115/1.2834308
73.
Park
,
S.
, and
Ateshian
,
G. A.
,
2006
, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
623
630
.10.1115/1.2206201
74.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
75.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
76.
Liu
,
H.
,
Holzapfel
,
G. A.
,
Skallerud
,
B. H.
, and
Prot
,
V.
,
2019
, “
Anisotropic Finite Strain Viscoelasticity: Constitutive Modeling and Finite Element Implementation
,”
J. Mech. Phys. Solids
,
124
, pp.
172
188
.10.1016/j.jmps.2018.09.014
You do not currently have access to this content.