Abstract

Vertebral fractures are the most common osteoporotic fractures, but their prediction using standard bone mineral density (BMD) measurements from dual energy X-ray absorptiometry (DXA) is limited in accuracy. Stiffness, displacement, and strain distribution properties derived from digital tomosynthesis-based digital volume correlation (DTS-DVC) have been suggested as clinically measurable metrics of vertebral bone quality. However, the extent to which these properties correlate to vertebral strength is unknown. To establish this relationship, two independent experiments, one examining isolated T11 and the other examining L3 vertebrae within the L2–L4 segments from cadaveric donors were utilized. Following DXA and DTS imaging, the specimens were uniaxially compressed to fracture. BMD, bone mineral content (BMC), and bone area were recorded for the anteroposterior and lateromedial views from DXA, stiffness, endplate to endplate displacement and distribution statistics of intravertebral strains were calculated from DTS-DVC and vertebral strength was measured from mechanical tests. Regression models were used to examine the relationships of strength with the other variables. Correlations of BMD with vertebral strength varied between experimental groups (R2adj = 0.19–0.78). DTS-DVC derived properties contributed to vertebral strength independently from BMD measures (increasing R2adj to 0.64–0.95). DTS-DVC derived stiffness was the best single predictor (R2adj = 0.66, p < 0.0001) and added the most to BMD in models of vertebral strength for pooled T11 and L3 specimens (R2adj = 0.95, p < 0.0001). These findings provide biomechanical relevance to DTS-DVC calculated properties of vertebral bone and encourage further efforts in the development of the DTS-DVC approach as a clinical tool.

References

1.
Samelson
,
E. J.
,
Hannan
,
M. T.
,
Zhang
,
Y.
,
Genant
,
H. K.
,
Felson
,
D. T.
, and
Kiel
,
D. P.
,
2006
, “
Incidence and Risk Factors for Vertebral Fracture in Women and Men: 25-Year Follow-Up Results From the Population-Based Framingham Study
,”
J. Bone Miner. Res.
,
21
(
8
), pp.
1207
1214
.10.1359/jbmr.060513
2.
Felsenberg
,
D.
,
Silman
,
A. J.
,
Lunt
,
M.
,
Armbrecht
,
G.
,
Ismail
,
A. A.
,
Finn
,
J. D.
,
Cockerill
,
W. C.
, et al.,
2002
, “
Incidence of Vertebral Fracture in Europe: Results From the European Prospective Osteoporosis Study (EPOS)
,”
J. Bone Miner. Res.
,
17
(
4
), pp.
716
724
.10.1359/jbmr.2002.17.4.716
3.
Burge
,
R.
,
Dawson-Hughes
,
B.
,
Solomon
,
D. H.
,
Wong
,
J. B.
,
King
,
A.
, and
Tosteson
,
A.
,
2007
, “
Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005-2025
,”
J. Bone Miner. Res.
,
22
(
3
), pp.
465
475
.10.1359/jbmr.061113
4.
Sambrook
,
P.
, and
Cooper
,
C.
,
2006
, “
Osteoporosis
,”
Lancet
,
367
(
9527
), pp.
2010
2018
.10.1016/S0140-6736(06)68891-0
5.
Di Bari
,
M.
,
Chiarlone
,
M.
,
Matteuzzi
,
D.
,
Zacchei
,
S.
,
Pozzi
,
C.
,
Bellia
,
V.
,
Tarantini
,
F.
,
Pini
,
R.
,
Masotti
,
G.
, and
Marchionni
,
N.
,
2004
, “
Thoracic Kyphosis and Ventilatory Dysfunction in Unselected Older Persons: An Epidemiological Study in Dicomano, Italy
,”
J. Am. Geriatr. Soc.
,
52
(
6
), pp.
909
915
.10.1111/j.1532-5415.2004.52257.x
6.
Schlaich
,
C.
,
Minne
,
H. W.
,
Bruckner
,
T.
,
Wagner
,
G.
,
Gebest
,
H. J.
,
Grunze
,
M.
,
Ziegler
,
R.
, and
Leidig-Bruckner
,
G.
,
1998
, “
Reduced Pulmonary Function in Patients With Spinal Osteoporotic Fractures
,”
Osteoporosis Int.
,
8
(
3
), pp.
261
267
.10.1007/s001980050063
7.
Miyakoshi
,
N.
,
Kasukawa
,
Y.
,
Sasaki
,
H.
,
Kamo
,
K.
, and
Shimada
,
Y.
,
2009
, “
Impact of Spinal Kyphosis on Gastroesophageal Reflux Disease Symptoms in Patients With Osteoporosis
,”
Osteoporosis Int.
,
20
(
7
), pp.
1193
1198
.10.1007/s00198-008-0777-x
8.
Klotzbuecher
,
C. M.
,
Ross
,
P. D.
,
Landsman
,
P. B.
,
Abbott
,
T. A.
, 3rd.
, and
Berger
,
M.
,
2010
, “
Patients With Prior Fractures Have an Increased Risk of Future Fractures: A Summary of the Literature and Statistical Synthesis
,”
J. Bone Miner. Res.
,
15
(
4
), pp.
721
739
.10.1359/jbmr.2000.15.4.721
9.
Lindsay
,
R.
,
Silverman
,
S. L.
,
Cooper
,
C.
,
Hanley
,
D. A.
,
Barton
,
I.
,
Broy
,
S. B.
,
Licata
,
A.
,
Benhamou
,
L.
,
Geusens
,
P.
,
Flowers
,
K.
,
Stracke
,
H.
, and
Seeman
,
E.
,
2001
, “
Risk of New Vertebral Fracture in the Year Following a Fracture
,”
JAMA
,
285
(
3
), pp.
320
323
.10.1001/jama.285.3.320
10.
Delmas
,
P. D.
,
Genant
,
H. K.
,
Crans
,
G. G.
,
Stock
,
J. L.
,
Wong
,
M.
,
Siris
,
E.
, and
Adachi
,
J. D.
,
2003
, “
Severity of Prevalent Vertebral Fractures and the Risk of Subsequent Vertebral and Nonvertebral Fractures: Results From the MORE Trial
,”
Bone
,
33
(
4
), pp.
522
532
.10.1016/S8756-3282(03)00241-2
11.
Melton
,
L. J.
, 3rd
,
Atkinson
,
E. J.
,
Cooper
,
C.
,
O'Fallon
,
W. M.
, and
Riggs
,
B. L.
,
1999
, “
Vertebral Fractures Predict Subsequent Fractures
,”
Osteoporosis Int.
,
10
(
3
), pp.
214
221
.10.1007/s001980050218
12.
Buckley
,
J. M.
,
Cheng
,
L.
,
Loo
,
K.
,
Slyfield
,
C.
, and
Xu
,
Z.
,
2007
, “
Quantitative Computed Tomography-Based Predictions of Vertebral Strength in Anterior Bending
,”
Spine
,
32
(
9
), pp.
1019
1027
.10.1097/01.brs.0000260979.98101.9c
13.
Hulme
,
P. A.
,
Boyd
,
S. K.
, and
Ferguson
,
S. J.
,
2007
, “
Regional Variation in Vertebral Bone Morphology and Its Contribution to Vertebral Fracture Strength
,”
Bone
,
41
(
6
), pp.
946
957
.10.1016/j.bone.2007.08.019
14.
Roux
,
J. P.
,
Wegrzyn
,
J.
,
Boutroy
,
S.
,
Bouxsein
,
M. L.
,
Hans
,
D.
, and
Chapurlat
,
R.
,
2013
, “
The Predictive Value of Trabecular Bone Score (TBS) on Whole Lumbar Vertebrae Mechanics: An Ex Vivo Study
,”
Osteoporosis Int.
,
24
(
9
), pp.
2455
2460
.10.1007/s00198-013-2316-7
15.
Ebbesen
,
E. N.
,
Thomsen
,
J. S.
,
Beck-Nielsen
,
H.
,
Nepper-Rasmussen
,
H. J.
, and
Mosekilde
,
L.
,
1999
, “
Lumbar Vertebral Body Compressive Strength Evaluated by Dual-Energy X-Ray Absorptiometry, Quantitative Computed Tomography, and Ashing
,”
Bone
,
25
(
6
), pp.
713
724
.10.1016/S8756-3282(99)00216-1
16.
Cranney
,
A.
,
Jamal
,
S. A.
,
Tsang
,
J. F.
,
Josse
,
R. G.
, and
Leslie
,
W. D.
,
2007
, “
Low Bone Mineral Density and Fracture Burden in Postmenopausal Women
,”
CMAJ
,
177
(
6
), pp.
575
580
.10.1503/cmaj.070234
17.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Models Predict In Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
.10.1016/S8756-3282(03)00210-2
18.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1998
, “
Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections
,”
J. Orthop. Res.
,
16
(
3
), pp.
300
308
.10.1002/jor.1100160305
19.
Liebschner
,
M. A.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
,
28
(
6
), pp.
559
565
.10.1097/01.BRS.0000049923.27694.47
20.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
,
2006
, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture site
,”
Spine (Phila Pa 1976)
,
31
(
16
), pp.
1789
1794
.10.1097/01.brs.0000225993.57349.df
21.
Buckley
,
J. M.
,
Loo
,
K.
, and
Motherway
,
J.
,
2007
, “
Comparison of Quantitative Computed Tomography-Based Measures in Predicting Vertebral Compressive Strength
,”
Bone
,
40
(
3
), pp.
767
774
.10.1016/j.bone.2006.10.025
22.
Aiyangar
,
A. K.
,
Vivanco
,
J.
,
Au
,
A. G.
,
Anderson
,
P. A.
,
Smith
,
E. L.
, and
Ploeg
,
H. L.
,
2014
, “
Dependence of Anisotropy of Human Lumbar Vertebral Trabecular Bone on Quantitative Computed Tomography-Based Apparent Density
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
091003
.10.1115/1.4027663
23.
Erdem
,
I.
,
Truumees
,
E.
, and
van der Meulen
,
M. C.
,
2013
, “
Simulation of the Behaviour of the L1 Vertebra for Different Material Properties and Loading Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
7
), pp.
736
746
.10.1080/10255842.2011.636741
24.
Yerby
,
S. A.
,
Bay
,
B. K.
,
Toh
,
E.
,
McLain
,
R. F.
, and
Drews
,
M. J.
,
1998
, “
The Effect of Boundary Conditions on Experimentally Measured Trabecular Strain in the Thoracic Spine
,”
J. Biomech.
,
31
(
10
), pp.
891
897
.10.1016/S0021-9290(98)00064-5
25.
Bay
,
B. K.
,
Smith
,
T. S.
,
Fyhrie
,
D. P.
, and
Saad
,
M.
,
1999
, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
,
39
(
3
), pp.
217
226
.10.1007/BF02323555
26.
Zauel
,
R.
,
Yeni
,
Y. N.
,
Bay
,
B. K.
,
Dong
,
X. N.
, and
Fyhrie
,
D. P.
,
2006
, “
Comparison of the Linear Finite Element Prediction of Deformation and Strain of Human Cancellous Bone to 3D Digital Volume Correlation Measurements
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
1
6
.10.1115/1.2146001
27.
Liu
,
L.
, and
Morgan
,
E. F.
,
2007
, “
Accuracy and Precision of Digital Volume Correlation in Quantifying Displacements and Strains in Trabecular Bone
,”
J. Biomech.
,
40
(
15
), pp.
3516
3520
.10.1016/j.jbiomech.2007.04.019
28.
Hussein
,
A. I.
, and
Morgan
,
E. F.
,
2013
, “
The Effect of Intravertebral Heterogeneity in Microstructure on Vertebral Strength and Failure Patterns
,”
Osteoporosis Int.
,
24
(
3
), pp.
979
989
.10.1007/s00198-012-2039-1
29.
Palanca
,
M.
,
Cristofolini
,
L.
,
Dall'Ara
,
E.
,
Curto
,
M.
,
Innocente
,
F.
,
Danesi
,
V.
, and
Tozzi
,
G.
,
2016
, “
Digital Volume Correlation Can Be Used to Estimate Local Strains in Natural and Augmented Vertebrae: An Organ-Level Study
,”
J. Biomech.
,
49
(
16
), pp.
3882
3890
.10.1016/j.jbiomech.2016.10.018
30.
Oravec
,
D.
,
Flynn
,
M. J.
,
Zauel
,
R.
,
Rao
,
S.
, and
Yeni
,
Y. N.
,
2019
, “
Digital Tomosynthesis Based Digital Volume Correlation: A Clinically Viable Noninvasive Method for Direct Measurement of Intravertebral Displacements Using Images of the Human Spine Under Physiological Load
,”
Med. Phys.
,
46
(
10
), pp.
4553
4562
.10.1002/mp.13750
31.
Oravec
,
D.
,
Zauel
,
R.
,
Flynn
,
M. J.
, and
Yeni
,
Y. N.
,
2020
, “
Vertebral Stiffness Measured Via Tomosynthesis-Based Digital Volume Correlation is Strongly Correlated With Reference Values From micro-CT-Based DVC
,”
Med. Eng. Phys.
,
84
, pp.
169
173
.10.1016/j.medengphy.2020.08.008
32.
Oravec
,
D.
,
Drost
,
J.
,
Zauel
,
R.
,
Flynn
,
M. J.
, and
Yeni
,
Y. N.
,
2021
, “
Assessment of Intravertebral Mechanical Strains and Cancellous Bone Texture Under Load Using a Clinically Available Digital Tomosynthesis Modality
,”
ASME J. Biomech. Eng.
,
143
(
10
), p.
101011
.10.1115/1.4051280
33.
Dobbins
,
J. T.
, 3rd.
, and
Godfrey
,
D. J.
,
2003
, “
Digital x-Ray Tomosynthesis: Current State of the Art and Clinical Potential
,”
Phys. Med. Biol.
,
48
(
19
), pp.
R65
R106
.10.1088/0031-9155/48/19/R01
34.
Mettler
,
F. A.
, Jr.
,
Huda
,
W.
,
Yoshizumi
,
T. T.
, and
Mahesh
,
M.
,
2008
, “
Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog
,”
Radiology
,
248
(
1
), pp.
254
263
.10.1148/radiol.2481071451
35.
Zhang
,
Y.
,
Li
,
X.
,
Segars
,
W. P.
, and
Samei
,
E.
,
2014
, “
Comparison of Patient Specific Dose Metrics Between Chest Radiography, Tomosynthesis, and CT for Adult Patients of Wide Ranging Body Habitus
,”
Med. Phys.
,
41
(
2
), p.
023901
.10.1118/1.4859315
36.
Flynn
,
M. J.
,
McGee
,
R.
, and
Blechinger
,
J.
,
2007
, “
Spatial Resolution of X-Ray Tomosynthesis in Relation to Computed Tomography for Coronal/Sagittal Images of the Knee
,”
SPIE
Paper No. 65100D.10.1117/12.713805
37.
Iyer
,
S.
,
Christiansen
,
B. A.
,
Roberts
,
B. J.
,
Valentine
,
M. J.
,
Manoharan
,
R. K.
, and
Bouxsein
,
M. L.
,
2010
, “
A Biomechanical Model for Estimating Loads on Thoracic and Lumbar Vertebrae
,”
Clin. Biomech. (Bristol, Avon)
,
25
(
9
), pp.
853
858
.10.1016/j.clinbiomech.2010.06.010
38.
Oravec
,
D.
,
Yaldo
,
O.
,
Bolton
,
C.
,
Flynn
,
M. J.
,
van Holsbeeck
,
M.
, and
Yeni
,
Y. N.
,
2019
, “
Digital Tomosynthesis and Fractal Analysis Predict Prevalent Vertebral Fractures in Patients With Multiple Myeloma: A Preliminary In Vivo Study
,”
AJR Am. J. Roentgenol.
,
213
(
1
), pp.
W38
W44
.10.2214/AJR.18.20700
39.
Wagnac
,
E.
,
Aubin
,
C. E.
,
Chaumoitre
,
K.
,
Mac-Thiong
,
J. M.
,
Menard
,
A. L.
,
Petit
,
Y.
,
Garo
,
A.
, and
Arnoux
,
P. J.
,
2017
, “
Substantial Vertebral Body Osteophytes Protect Against Severe Vertebral Fractures in Compression
,”
PLoS One
,
12
(
10
), p.
e0186779
.10.1371/journal.pone.0186779
40.
Lu
,
Y.
,
Krause
,
M.
,
Bishop
,
N.
,
Sellenschloh
,
K.
,
Gluer
,
C. C.
,
Puschel
,
K.
,
Amling
,
M.
,
Morlock
,
M. M.
, and
Huber
,
G.
,
2015
, “
The Role of Patient-Mode High-Resolution Peripheral Quantitative Computed Tomography Indices in the Prediction of Failure Strength of the Elderly Women's Thoracic Vertebral Body
,”
Osteoporosis Int.
,
26
(
1
), pp.
237
244
.10.1007/s00198-014-2846-7
41.
Chevalier
,
Y.
,
Charlebois
,
M.
,
Pahr
,
D.
,
Varga
,
P.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
,
2008
, “
A Patient-Specific Finite Element Methodology to Predict Damage Accumulation in Vertebral Bodies Under Axial Compression, Sagittal Flexion and Combined Loads
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
477
487
.10.1080/10255840802078022
42.
Moro
,
M.
,
Hecker
,
A. T.
,
Bouxsein
,
M. L.
, and
Myers
,
E. R.
,
1995
, “
Failure Load of Thoracic Vertebrae Correlates With Lumbar Bone Mineral Density Measured by DXA
,”
Calcif. Tissue Int.
,
56
(
3
), pp.
206
209
.10.1007/BF00298611
43.
Myers
,
B. S.
,
Arbogast
,
K. B.
,
Lobaugh
,
B.
,
Harper
,
K. D.
,
Richardson
,
W. J.
, and
Drezner
,
M. K.
,
2009
, “
Improved Assessment of Lumbar Vertebral Body Strength Using Supine Lateral Dual-Energy X-Ray Absorptiometry
,”
J. Bone Miner. Res.
,
9
(
5
), pp.
687
693
.10.1002/jbmr.5650090514
44.
Bjarnason
,
K.
,
Hassager
,
C.
,
Svendsen
,
O. L.
,
Stang
,
H.
, and
Christiansen
,
C.
,
1996
, “
Anteroposterior and Lateral Spinal DXA for the Assessment of Vertebral Body Strength: Comparison With Hip and Forearm Measurement
,”
Osteoporosis Int.
,
6
(
1
), pp.
37
42
.10.1007/BF01626536
45.
Eswaran
,
S. K.
,
Gupta
,
A.
, and
Keaveny
,
T. M.
,
2007
, “
Locations of Bone Tissue at High Risk of Initial Failure During Compressive Loading of the Human Vertebral Body
,”
Bone
,
41
(
4
), pp.
733
739
.10.1016/j.bone.2007.05.017
46.
Jackman
,
T. M.
,
DelMonaco
,
A. M.
, and
Morgan
,
E. F.
,
2016
, “
Accuracy of Finite Element Analyses of CT Scans in Predictions of Vertebral Failure Patterns Under Axial Compression and Anterior Flexion
,”
J. Biomech.
,
49
(
2
), pp.
267
275
.10.1016/j.jbiomech.2015.12.004
47.
Maquer
,
G.
,
Schwiedrzik
,
J.
,
Huber
,
G.
,
Morlock
,
M. M.
, and
Zysset
,
P. K.
,
2015
, “
Compressive Strength of Elderly Vertebrae is Reduced by Disc Degeneration and Additional Flexion
,”
J. Mech. Behav. Biomed. Mater.
,
42
, pp.
54
66
.10.1016/j.jmbbm.2014.10.016
48.
Nekkanty
,
S.
,
Yerramshetty
,
J.
,
Kim
,
D. G.
,
Zauel
,
R.
,
Johnson
,
E.
,
Cody
,
D. D.
, and
Yeni
,
Y. N.
,
2010
, “
Stiffness of the Endplate Boundary Layer and Endplate Surface Topography Are Associated With Brittleness of Human Whole Vertebral Bodies
,”
Bone
,
47
(
4
), pp.
783
789
.10.1016/j.bone.2010.07.001
49.
Kosmopoulos
,
V.
,
Keller
,
T. S.
, and
Schizas
,
C.
,
2009
, “
Early Stage Disc Degeneration Does Not Have an Appreciable Affect on Stiffness and Load Transfer Following Vertebroplasty and Kyphoplasty
,”
Eur. Spine J.
,
18
(
1
), pp.
59
68
.10.1007/s00586-008-0828-1
50.
Buckley
,
J. M.
,
Leang
,
D. C.
, and
Keaveny
,
T. M.
,
2006
, “
Sensitivity of Vertebral Compressive Strength to Endplate Loading Distribution
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
641
646
.10.1115/1.2241637
51.
Bruno
,
A. G.
,
Burkhart
,
K.
,
Allaire
,
B.
,
Anderson
,
D. E.
, and
Bouxsein
,
M. L.
,
2017
, “
Spinal Loading Patterns From Biomechanical Modeling Explain the High Incidence of Vertebral Fractures in the Thoracolumbar Region
,”
J. Bone Miner. Res.
,
32
(
6
), pp.
1282
1290
.10.1002/jbmr.3113
52.
Yeni
,
Y. N.
,
Kim
,
D. G.
,
Divine
,
G. W.
,
Johnson
,
E. M.
, and
Cody
,
D. D.
,
2009
, “
Human Cancellous Bone From T12-L1 Vertebrae Has Unique Microstructural and Trabecular Shear Stress Properties
,”
Bone
,
44
(
1
), pp.
130
136
.10.1016/j.bone.2008.09.002
53.
Nicholson
,
P. H.
, and
Alkalay
,
R.
,
2007
, “
Quantitative Ultrasound Predicts Bone Mineral Density and Failure Load in Human Lumbar Vertebrae
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
6
), pp.
623
629
.10.1016/j.clinbiomech.2006.12.008
54.
Bjarnason
,
K.
,
Nilas
,
L.
,
Hassager
,
C.
, and
Christiansen
,
C.
,
1995
, “
Dual Energy X-Ray Absorptiometry of the Spine–Decubitus Lateral Versus Anteroposterior Projection in Osteoporotic Women: Comparison to Single Energy X-Ray Absorptiometry of the Forearm
,”
Bone
,
16
(
2
), pp.
255
260
.10.1016/8756-3282(94)00037-Z
55.
Morris
,
R. M.
,
Yang
,
L.
,
Martin-Fernandez
,
M. A.
,
Pozo
,
J. M.
,
Frangi
,
A. F.
, and
Wilkinson
,
J. M.
,
2015
, “
High-Spatial-Resolution Bone Densitometry With Dual-Energy X-Ray Absorptiometric Region-Free Analysis
,”
Radiology
,
274
(
2
), pp.
532
539
.10.1148/radiol.14140636
You do not currently have access to this content.