Abstract

Successful occlusion of cerebral aneurysms using coil embolization is contingent upon stable thrombus formation, and the quality of the thrombus depends upon the biomechanical environment. The goal of this study was to investigate how coil embolization alters the mechanical micro-environment within the aneurysm dome. Inertialess particles were injected in three-dimensional, computational simulations of flow inside patient aneurysms using patient-specific boundary conditions. Coil embolization was simulated as a homogenous porous medium of known permeability and inertial constant. Lagrangian particle tracking was used to calculate the residence time and shear stress history for particles in the flow before and after treatment. The percentage of particles entering the aneurysm dome correlated with the neck surface area before and after treatment (pretreatment: R2 = 0.831, P < 0.001; post-treatment: R2 = 0.638, P < 0.001). There was an inverse relationship between the change in particles entering the dome and coil packing density (R2 = 0.600, P < 0.001). Following treatment, the particles with the longest residence times tended to remain within the dome even longer while accumulating lower shear stress. A significant correlation was observed between the treatment effect on residence time and the ratio of the neck surface area to porosity (R2 = 0.390, P = 0.007). The results of this study suggest that coil embolization triggers clot formation within the aneurysm dome via a low shear stress-mediated pathway. This hypothesis links independently observed findings from several benchtop and clinical studies, furthering our understanding of this treatment strategy.

References

1.
Nieuwkamp
,
D. J.
,
Setz
,
L. E.
,
Algra
,
A.
,
Linn
,
F. H.
,
de Rooij
,
N. K.
, and
Rinkel
,
G. J.
,
2009
, “
Changes in Case Fatality of Aneurysmal Subarachnoid Haemorrhage Over Time, According to Age, Sex, and Region: A Meta-Analysis
,”
Lancet Neurol.
,
8
(
7
), pp.
635
642
.10.1016/S1474-4422(09)70126-7
2.
Molyneux
,
A. J.
,
Kerr
,
R. S.
,
Yu
,
L. M.
,
Clarke
,
M.
,
Sneade
,
M.
,
Yarnold
,
J. A.
, and
Sandercock
,
P.
,
2002
, “
International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients With Ruptured Intracranial Aneurysms: A Randomised Comparison of Effects on Survival, Dependency, Seizures, Rebleeding, Subgroups
,”
Lancet
,
360
(
9342
), pp.
1267
1274
.10.1016/S0140-6736(02)11314-6
3.
Spetzler
,
R. F.
,
Mcdougall
,
C. G.
,
Zabramski
,
J. M.
,
Albuquerque
,
F. C.
,
Hills
,
N. K.
,
Russin
,
J. J.
,
Partovi
,
S.
,
Nakaji
,
P.
, and
Wallace
,
R. C.
,
2015
, “
The Barrow Ruptured Aneurysm Trial: 6-Year Results Robert
,”
J. Neurosurg.
,
123
(
3
), pp.
609
617
.10.3171/2014.9.JNS141749
4.
Crobeddu
,
E.
,
Lanzino
,
G.
,
Kallmes
,
D. F.
, and
Cloft
,
H. J.
,
2013
, “
Review of 2 Decades of Aneurysm-Recurrence Literature, Part 1: Reducing Recurrence After Endovascular Coiling
,”
Am. J. Neuroradiol.
,
34
(
2
), pp.
266
270
.10.3174/ajnr.A3032
5.
Teleb
,
M. S.
,
Pandya
,
D. J.
,
Castonguay
,
A. C.
,
Eckardt
,
G.
,
Sweis
,
R.
,
Lazzaro
,
M. A.
,
Issa
,
M. A.
,
Fitzsimmons
,
B.-F.
,
Lynch
,
J. R.
, and
Zaidat
,
O. O.
,
2014
, “
Safety and Predictors of Aneurysm Retreatment for Remnant Intracranial Aneurysm After Initial Endovascular Embolization
,”
JNIS
,
6
(
7
), pp.
490
494
.10.1136/neurintsurg-2013-010836
6.
Fujimura
,
S.
,
Takao
,
H.
,
Suzuki
,
T.
,
Dahmani
,
C.
,
Ishibashi
,
T.
,
Mamori
,
H.
,
Yamamoto
,
M.
, and
Murayama
,
Y.
,
2018
, “
A New Combined Parameter Predicts re-Treatment for Coil-Embolized Aneurysms: A Computational Fluid Dynamics Multivariable Analysis Study
,”
JNIS
,
10
(
8
), pp.
791
796
.10.1136/neurintsurg-2017-013433
7.
Otani
,
T.
,
Ii
,
S.
,
Shigematsu
,
T.
,
Fujinaka
,
T.
,
Hirata
,
M.
,
Ozaki
,
T.
, and
Wada
,
S.
,
2017
, “
Computational Study for the Effects of Coil Configuration on Blood Flow Characteristics in Coil-Embolized Cerebral Aneurysm
,”
Med. Biol. Eng. Comput.
,
55
(
5
), pp.
697
710
.10.1007/s11517-016-1541-6
8.
Wisniewski
,
K.
,
Tomasik
,
B.
,
Tyfa
,
Z.
,
Reorowicz
,
P.
,
Bobeff
,
E. J.
,
Stefá nczyk
,
L.
,
Posmyk
,
B. J.
,
,
K.
,
Jaskólski
,
D. J.
,
Mariscalco
,
G.
, and
Gelsomino
,
S.
,
2021
, “
Clinical Medicine Porous Media Computational Fluid Dynamics and the Role of the First Coil in the Embolization of Ruptured Intracranial Aneurysms
,”
J. Clin. Med.
,
10
(
7
), p.
1348
.10.3390/jcm10071348
9.
Otani
,
T.
,
Nakamura
,
M.
,
Fujinaka
,
T.
,
Hirata
,
M.
,
Kuroda
,
J.
,
Shibano
,
K.
, and
Wada
,
S.
,
2013
, “
Computational Fluid Dynamics of Blood Flow in Coil-Embolized Aneurysms: Effect of Packing Density on Flow Stagnation in an Idealized Geometry
,”
Med. Biol. Eng. Comput.
,
51
(
8
), pp.
901
910
.10.1007/s11517-013-1062-5
10.
Umeda
,
Y.
,
Ishida
,
F.
,
Tsuji
,
M.
,
Furukawa
,
K.
,
Shiba
,
M.
,
Yasuda
,
R.
,
Toma
,
N.
,
Sakaida
,
H.
, and
Suzuki
,
H.
,
2017
, “
Computational Fluid Dynamics (CFD) Using Porous Media Modeling Predicts Recurrence After Coiling of Cerebral Aneurysms
,”
PLoS One
,
12
(
12
), p.
e0190222
.10.1371/journal.pone.0190222
11.
Schirmer
,
C.
, and
Malek
,
A.
,
2010
, “
Critical Influence of Framing Coil Orientation on Intra-Aneurysmal and Neck Region Hemodynamics in a Sidewall Aneurysm Model
,”
Neurosurgery
,
67
(
6
), pp.
1692
1702
.10.1227/NEU.0b013e3181f9a93b
12.
Chong
,
W.
,
Zhang
,
Y.
,
Qian
,
Y.
,
Lai
,
L.
,
Parker
,
G.
, and
Mitchell
,
K.
,
2014
, “
Computational Hemodynamics Analysis of Intracranial Aneurysms Treated With Flow Diverters: Correlation With Clinical Outcomes
,”
Am. J. Neuroradiol.
,
35
(
1
), pp.
136
142
.10.3174/ajnr.A3790
13.
Luo
,
B.
,
Yang
,
X.
,
Wang
,
S.
,
Li
,
H.
,
Chen
,
J.
,
Yu
,
H.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Mu
,
S.
,
Liu
,
Z.
, and
Ding
,
G.
,
2011
, “
High Shear Stress and Flow Velocity in Partially Occluded Aneurysms Prone to Recanalization
,”
Stroke
,
42
(
3
), pp.
745
753
.10.1161/STROKEAHA.110.593517
14.
Jesty
,
J.
,
Yin
,
W.
,
Perrotta
,
P.
, and
Bluestein
,
D.
,
2003
, “
Platelet Activation in a Circulating Flow Loop: Combined Effects of Shear Stress and Exposure Time
,”
Platelets
,
14
(
3
), pp.
143
149
.10.1080/0953710031000092839
15.
Yin
,
W.
,
Shanmugavelayudam
,
S. K.
, and
Rubenstein
,
D. A.
,
2011
, “
The Effect of Physiologically Relevant Dynamic Shear Stress on Platelet and Endothelial Cell Activation
,”
Thromb. Res.
,
127
(
3
), pp.
235
241
.10.1016/j.thromres.2010.11.021
16.
Qiu
,
Y.
,
Ciciliano
,
J.
,
Myers
,
D. R.
,
Tran
,
R.
, and
Lam
,
W. A.
,
2015
, “
Platelets and Physics: How Platelets ‘Feel’ and Respond to Their Mechanical Microenvironment
,”
Blood Rev.
,
29
(
6
), pp.
377
386
.10.1016/j.blre.2015.05.002
17.
Qiu
,
Y.
,
Brown
,
A. C.
,
Myers
,
D. R.
,
Sakurai
,
Y.
,
Mannino
,
R. G.
,
Tran
,
R.
,
Ahn
,
B.
,
Hardy
,
E. T.
,
Kee
,
M. F.
,
Kumar
,
S.
,
Bao
,
G.
,
Barker
,
T. H.
, and
Lam
,
W. A.
,
2014
, “
Platelet Mechanosensing of Substrate Stiffness During Clot Formation Mediates Adhesion, Spreading, and Activation
,”
PNAS
,
111
(
40
), pp.
14430
14435
.10.1073/pnas.1322917111
18.
Sang
,
Y.
,
Roest
,
M.
,
de Laat
,
B.
,
de Groot
,
P. G.
, and
Huskens
,
D.
,
2021
, “
Interplay Between Platelets and Coagulation
,”
Blood Rev.
,
46
, p.
100733
.10.1016/j.blre.2020.100733
19.
Weisel
,
J. W.
,
2007
, “
Structure of Fibrin: Impact on Clot Stability
,”
J. Thromb. Haemost.
,
5
(
Supp. 1
), pp.
116
124
.10.1111/j.1538-7836.2007.02504.x
20.
Reininger
,
A. J.
,
2008
, “
Function of Von Willebrand Factor in Haemostasis and Thrombosis
,”
Haemophilia
,
14
(
Supp. 5
), pp.
11
26
.10.1111/j.1365-2516.2008.01848.x
21.
Marsh
,
L. M. M.
,
Barbour
,
M. C.
,
Chivukula
,
V. K.
,
Chassagne
,
F.
,
Kelly
,
C. M.
,
Levy
,
S. H.
,
Kim
,
L. J.
,
Levitt
,
M. R.
, and
Aliseda
,
A.
,
2019
, “
Platelet Dynamics and Hemodynamics of Cerebral Aneurysms Treated With Flow-Diverting Stents
,”
Ann. Biomed. Eng.
, 48(1), pp.
490
501
.10.1007/s10439-019-02368-0
22.
Chivukula
,
V. K.
,
Marsh
,
L.
,
Chasagne
,
F.
,
Barbour
,
M.
,
Kelly
,
C.
,
Levy
,
S.
,
Geindreau
,
C.
,
Rolland du Roscoat
,
S.
,
Kim
,
L.
,
Levitt
,
M. R.
, and
Aliseda
,
A.
,
2021
, “
Lagrangian Trajectory Simulation of Platelets and Synchrotron Microtomography Augment Hemodynamic Analysis of Intracranial Aneurysms Treated With Embolic Coils
,”
ASME J. Biomech. Eng.
, 143(7), p.
071002
.10.1115/1.4050375
23.
Shadden
,
S. C.
, and
Arzani
,
A.
,
2015
, “
Lagrangian Postprocessing of Computational Hemodynamics
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
41
58
.10.1007/s10439-014-1070-0
24.
Reza
,
M. M. S.
, and
Arzani
,
A.
,
2019
, “
A Critical Comparison of Different Residence Time Measures in Aneurysms
,”
J. Biomech.
,
88
, pp.
122
129
.10.1016/j.jbiomech.2019.03.028
25.
Cao
,
J.
, and
Rittgers
,
S. E.
,
1998
, “
Particle Motion Within In Vitro Models of Stenosed Internal Carotid and Left Anterior Descending Coronary Arteries
,”
Ann. Biomed. Eng.
,
26
(
2
), pp.
190
199
.10.1114/1.131
26.
Guy
,
R. D.
,
Fogelson
,
A. L.
, and
Keener
,
J. P.
,
2007
, “
Fibrin Gel Formation in a Shear Flow
,”
Math. Med. Biol.
,
24
(
1
), pp.
111
130
.10.1093/imammb/dql022
27.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1997
, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.10.1007/BF02648048
28.
Alkarithi
,
G.
,
Duval
,
C.
,
Shi
,
Y.
,
Macrae
,
F. L.
, and
Ariëns
,
R. A. S.
,
2021
, “
Thrombus Structural Composition in Cardiovascular Disease
,”
Arterioscler. Thromb. Vasc. Biol
,
41
(
9
), pp.
2370
2383
.10.1161/ATVBAHA.120.315754
29.
Aliseda
,
A.
,
Chivukula
,
V. K.
,
Mcgah
,
P. M.
,
Prisco
,
A. R.
,
Beckman
,
J. A.
,
Garcia
,
G.
,
Mokadam
,
N. A.
, and
Mahr
,
C.
,
2017
, “
LVAD Outflow Graft Angle and Thrombosis Risk
,”
ASAIO J.
,
63
(
1
), pp.
14
23
.10.1097/MAT.0000000000000443
30.
Levitt
,
M. R.
,
McGah
,
P. M.
,
Aliseda
,
A.
,
Mourad
,
P. D.
,
Nerva
,
J. D.
,
Vaidya
,
S. S.
,
Morton
,
R. P.
,
Ghodke
,
B. V.
, and
Kim
,
L. J.
,
2014
, “
Cerebral Aneurysms Treated With Flow-Diverting Stents: Computational Models With Intravascular Blood Flow Measurements
,”
AJNR
,
35
(
1
), pp.
143
148
.10.3174/ajnr.A3624
31.
Levitt
,
M. R.
,
Barbour
,
M.
,
du Roscoat
,
S.
,
Geirndreau
,
C.
,
Chivukula
,
V. K.
,
Mcgah
,
P. M.
,
Nerva
,
J. D.
,
Morton
,
R. P.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2017
, “
Computational Fluid Dynamics of Cerebral Aneurysm Coiling Using High-Resolution and High-Energy Synchrotron X-Ray Microtomography: Comparison With the Homogeneous Porous Medium Approach
,”
JNIS
,
9
(
8
), pp.
777
782
.10.1136/neurintsurg-2016-012479
32.
Kakalis
,
N.
,
M. P.
,
Mitsos
,
A. P.
,
Byrne
,
J. V.
, and
Ventikos
,
Y.
,
2008
, “
The Haemodynamics of Endovascular Aneurysm Treatment: A Computational Modelling Approach for Estimating the Influence of Multiple Coil Deployment
,”
IEEE Trans. Med. Imaging
,
27
(
6
), pp.
814
824
.10.1109/TMI.2008.915549
33.
Muschenborn
,
A. D.
,
Ortega
,
J. M.
,
Szafron
,
J. M.
,
Szafron
,
D. J.
, and
Maitland
,
D. J.
,
2013
, “
Porous Media Properties of Reticulated Shape Memory Polymer Foams and Mock Embolic Coils for Aneurysm Treatment
,”
Biomed. Eng. Online
,
12
, Article No. 103.10.1186/1475-925X-12-103
34.
Vahidkhah
,
K.
,
Diamond
,
S. L.
, and
Bagchi
,
P.
,
2014
, “
Platelet Dynamics in Three-Dimensional Simulation of Whole Blood
,”
Biophys. J.
,
106
(
11
), pp.
2529
2540
.10.1016/j.bpj.2014.04.028
35.
Gear
,
A. R. L.
,
1994
, “
Platelet Adhesion, Shape Change, and Aggregation: Rapid Initiation and Signal Transduction Events
,”
Can. J. Physiol. Pharmacol.
,
72
(
3
), pp.
285
294
.10.1139/y94-044
36.
Diamond
,
S. L.
,
2016
, “
Formation, Systems Analysis of Thrombus
,”
Circ. Res.
,
118
(
9
), pp.
1348
1362
.10.1161/CIRCRESAHA.115.306824
37.
Collet
,
J.-P.
,
Shuman
,
H.
,
Ledger
,
R. E.
,
Lee
,
S.
, and
Weisel
,
J. W.
,
2005
, “
The Elasticity of an Individual Fibrin Fiber in a Clot
,”
PNAS
,
102
(
26
), pp.
9133
9137
.10.1073/pnas.0504120102
38.
Haworth
,
K. J.
,
Weidner
,
C. R.
,
Abruzzo
,
T. A.
,
Shearn
,
J. T.
, and
Holland
,
C. K.
,
2015
, “
Mechanical Properties and Fibrin Characteristics of Endovascular Coil-Clot Complexes: Relevance to Endovascular Cerebral Aneurysm Repair Paradigms
,”
JNIS
,
7
(
4
), pp.
291
296
.10.1136/neurintsurg-2013-011076
39.
Brass
,
L. F.
, and
Diamond
,
S. L.
,
2016
, “
Transport Physics and Biorheology in the Setting of Hemostasis and Thrombosis
,”
J. Thromb. Haemost.
,
14
(
5
), pp.
906
917
.10.1111/jth.13280
40.
Hathcock
,
J. J.
,
2006
, “
Flow Effects on Coagulation and Thrombosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
26
(
8
), pp.
1729
1737
.10.1161/01.ATV.0000229658.76797.30
41.
Wootton
,
D. M.
, and
Ku
,
D. N.
,
1999
, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
,
1
(
1
), pp.
299
329
.10.1146/annurev.bioeng.1.1.299
42.
Killer
,
M.
,
Plenk
,
H.
,
Minnich
,
B.
,
Al-Schameri
,
R.
,
Lametschwantner
,
A.
, and
Richling
,
B.
,
2009
, “
Histological Demonstration of Healing in Experimental Aneurysms
,”
Minim. Invasive Neurosurg.
,
52
(
04
), pp.
170
175
.10.1055/s-0029-1237366
43.
Brinjikji
,
W.
,
Kallmes
,
D. F.
, and
Kadirvel
,
R.
,
2015
, “
Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature
,”
AJNR
,
36
(
7
), pp.
1216
1222
.10.3174/ajnr.A4175
44.
Chivukula
,
V. K.
,
Beckman
,
J.
,
A.
,
Prisco
,
A. R.
,
Lin
,
S.
,
Dardas
,
T. F.
,
Cheng
,
R. K.
,
Farris
,
S. D.
,
Smith
,
J. W.
,
Mokadam
,
N.
,
A.
,
Mahr
,
C.
, and
Aliseda
,
A.
,
2019
, “
Small Left Ventricular Size is an Independent Risk Factor for Ventricular Assist Device Thrombosis
,”
Asaio J.
,
65
(
2
), pp.
152
159
.10.1097/MAT.0000000000000798
45.
Murayama
,
Y.
,
Fujimura
,
S.
,
Suzuki
,
T.
, and
Takao
,
H.
,
2019
, “
Computational Fluid Dynamics as a Risk Assessment Tool for Aneurysm Rupture
,”
Neurosurg. Focus
,
47
(
1
), p.
E12
.10.3171/2019.4.FOCUS19189
46.
Makoyeva
,
A.
,
Bing
,
F.
,
Darsaut
,
T. E.
,
Salazkin
,
I.
, and
Raymond
,
J.
,
2013
, “
The Varying Porosity of Braided Self-Expanding Stents and Flow Diverters: An Experimental Study
,”
Am. J. Neuroradiol.
,
34
(
3
), pp.
596
602
.10.3174/ajnr.A3234
47.
Lieber
,
B. B.
,
Stancampiano
,
A. P.
, and
Wakhloo
,
A. K.
,
1997
, “
Alteration of Hemodynamics in Aneurysm Models by Stenting: Influence of Stent Porosity
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
460
469
.10.1007/BF02684187
You do not currently have access to this content.