Abstract

Gait modifications, such as lateral trunk lean (LTL), medial knee thrust (MKT), and toe-in gait (TIG), are frequently investigated interventions used to slow the progression of knee osteoarthritis. The Lerner knee model was developed to estimate the tibiofemoral joint reaction forces (JRF) in the medial and lateral compartments during gait. These models may be useful for estimating the effects on the JRF in the knee as a result of gait modifications. We hypothesized that all gait modifications would decrease the JRF compared to normal gait. Twenty healthy individuals volunteered for this study (26.7 ± 4.7 years, 1.75 ± 0.1 m, 73.4 ± 12.4 kg). Ten trials were collected for normal gait as well as for the three gait modifications: LTL, MKT, and TIG. The data were used to estimate the JRF in the first and second peaks for the medial and lateral compartments of the knee via opensim using the Lerner knee model. No significant difference from baseline was found for the first peak in the medial compartment. There was a decrease in JRF in the medial compartment during the loading phase of gait for TIG (6.6%) and LTL (4.9%) and an increasing JRF for MKT (2.6%). but none was statistically significant. A significant increase from baseline was found for TIG (5.8%) in the medial second peak. We found a large variation in individual responses to gait interventions, which may help explain the lack of statistically significant results. Possible factors influencing these wide ranges of responses to gait modifications include static alignment and the impacts of variation in muscle coordination strategies used, by participants, to implement gait modifications.

References

1.
Cross
,
M.
,
Smith
,
E.
,
Hoy
,
D.
,
Nolte
,
S.
,
Ackerman
,
I.
,
Fransen
,
M.
,
Bridgett
,
L.
, et al.,
2014
, “
The Global Burden of Hip and Knee Osteoarthritis: Estimates From the Global Burden of Disease 2010 Study
,”
Ann. Rheum. Dis.
,
73
(
7
), pp.
1323
1330
.10.1136/annrheumdis-2013-204763
2.
Lawrence
,
R. C.
,
Felson
,
D. T.
,
Helmick
,
C. G.
,
Arnold
,
L. M.
,
Choi
,
H.
,
Deyo
,
R. A.
,
Gabriel
,
S.
, et al.,
2008
, “
Estimates of the Prevalence of Arthritis and Other Rheumatic Conditions in the United States. Part II
,”
Arthritis Rheum.
,
58
(
1
), pp.
26
35
.10.1002/art.23176
3.
Ratzlaff
,
C. R.
,
Koehoorn
,
M.
,
Cibere
,
J.
, and
Kopec
,
J. A.
,
2012
, “
Is Lifelong Knee Joint Force From Work, Home, and Sport Related to Knee Osteoarthritis?
,”
Int. J. Rheumatol.
,
2012
, pp.
1
14
.10.1155/2012/584193
4.
Sharma
,
L.
,
Hurwitz
,
D. E.
,
Thonar
,
E. J.-M. A.
,
Sum
,
J. A.
,
Lenz
,
M. E.
,
Dunlop
,
D. D.
,
Schnitzer
,
T. J.
,
Kirwan-Mellis
,
G.
, and
Andriacchi
,
T. P.
,
1998
, “
Knee Adduction Moment, Serum Hyaluronan Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis
,”
Arthritis Rheum.
,
41
(
7
), pp.
1233
1240
.10.1002/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L
5.
Ferrigno
,
C.
,
Stoller
,
I. S.
,
Shakoor
,
N.
,
Thorp
,
L. E.
, and
Wimmer
,
M. A.
,
2016
, “
The Feasibility of Using Augmented Auditory Feedback From a Pressure Detecting Insole to Reduce the Knee Adduction Moment: A Proof of Concept Study
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021014
.10.1115/1.4032123
6.
Hunt
,
M. A.
,
Simic
,
M.
,
Hinman
,
R. S.
,
Bennell
,
K. L.
, and
Wrigley
,
T. V.
,
2011
, “
Feasibility of a Gait Retraining Strategy for Reducing Knee Joint Loading: Increased Trunk Lean Guided by Real-Time Biofeedback
,”
J. Biomech.
,
44
(
5
), pp.
943
947
.10.1016/j.jbiomech.2010.11.027
7.
Eddo
,
O.
,
Lindsey
,
B.
,
Caswell
,
S. V.
, and
Cortes
,
N.
,
2017
, “
Current Evidence of Gait Modification With Real-Time Biofeedback to Alter Kinetic, Temporospatial, and Function-Related Outcomes: A Review
,”
Int. J. Kinesiology Sports Sci.
,
5
(
3
), pp.
35
35
.10.7575/aiac.ijkss.v.5n.3p.35
8.
Fregly
,
B. J.
,
2012
, “
Gait Modification to Treat Knee Osteoarthritis
,”
HSS J.
,
8
(
1
), pp.
45
48
.10.1007/s11420-011-9229-9
9.
Lindsey
,
B.
,
Eddo
,
O.
,
Caswell
,
S. V.
,
Prebble
,
M.
, and
Cortes
,
N.
,
2020
, “
Reductions in Peak Knee Abduction Moment in Three Previously Studied Gait Modification Strategies
,”
Knee
,
27
(
1
), pp.
102
110
.10.1016/j.knee.2019.09.017
10.
Miller
,
R. H.
,
Esterson
,
A. Y.
, and
Shim
,
J. K.
,
2015
, “
Joint Contact Forces When Minimizing the External Knee Adduction Moment by Gait Modification: A Computer Simulation Study
,”
Knee
,
22
(
6
), pp.
481
489
.10.1016/j.knee.2015.06.014
11.
Simic
,
M.
,
Hinman
,
R. S.
,
Wrigley
,
T. V.
,
Bennell
,
K. L.
, and
Hunt
,
M. A.
,
2010
, “
Gait Modification Strategies for Altering Medial Knee Joint Load: A Systematic Review
,”
Arthritis Care Res.
,
63
(
3
), pp. 405–426.10.1002/acr.20380
12.
Simic
,
M.
,
Hunt
,
M. A.
,
Bennell
,
K. L.
,
Hinman
,
R. S.
, and
Wrigley
,
T. V.
,
2012
, “
Trunk Lean Gait Modification and Knee Joint Load in People With Medial Knee Osteoarthritis: The Effect of Varying Trunk Lean Angles
,”
Arthritis Care Res.
64
(
10
), pp.
1545
1553
.10.1002/acr.21724
13.
Hunt
,
M. A.
,
Birmingham
,
T. B.
,
Bryant
,
D.
,
Jones
,
I.
,
Giffin
,
J. R.
,
Jenkyn
,
T. R.
, and
Vandervoort
,
A. A.
,
2008
, “
Lateral Trunk Lean Explains Variation in Dynamic Knee Joint Load in Patients With Medial Compartment Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
16
(
5
), pp.
591
599
.10.1016/j.joca.2007.10.017
14.
Mundermann
,
A.
,
Asay
,
J. L.
,
Mundermann
,
L.
, and
Andriacchi
,
T. P.
,
2008
, “
Implications of Increased Medio-Lateral Trunk Sway for Ambulatory Mechanics
,”
J. Biomech.
,
41
(
1
), pp.
165
170
.10.1016/j.jbiomech.2007.07.001
15.
Ferrigno
,
C.
,
Wimmer
,
M. A.
,
Trombley
,
R. M.
,
Lundberg
,
H. J.
,
Shakoor
,
N.
, and
Thorp
,
L. E.
,
2016
, “
A Reduction in the Knee Adduction Moment With Medial Thrust Gait is Associated With a Medial Shift in Center of Plantar Pressure
,”
Med. Eng. Phys.
,
38
(
7
), pp.
615
621
.10.1016/j.medengphy.2016.03.008
16.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
1695
.10.1109/TBME.2007.891934
17.
Jackson
,
B.
,
Gordon
,
K. E.
, and
Chang
,
A. H.
,
2018
, “
Immediate and Short-Term Effects of Real-Time Knee Adduction Moment Feedback on the Peak and Cumulative Knee Load During Walking
,”
J. Orthop. Res.
,
36
(
1
), pp.
397
404
.10.1002/jor.23659
18.
Kinney
,
A. L.
,
Besier
,
T. F.
,
Silder
,
A.
,
Delp
,
S. L.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Changes in In Vivo Knee Contact Forces Through Gait Modification
,”
J. Orthop. Res.
,
31
(
3
), pp.
434
440
.10.1002/jor.22240
19.
Walter
,
J. P.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
,
2010
, “
Decreased Knee Adduction Moment Does Not Guarantee Decreased Medial Contact Force During Gait
,”
J. Orthop. Res.
,
28
(
10
), pp.
1348
1354
.10.1002/jor.21142
20.
Richards
,
R. E.
,
Andersen
,
M. S.
,
Harlaar
,
J.
, and
van den Noort
,
J. C.
,
2018
, “
Relationship Between Knee Joint Contact Forces and External Knee Joint Moments in Patients With Medial Knee Osteoarthritis: Effects of Gait Modifications
,”
Osteoarthritis Cartilage
,
26
(
9
), pp.
1203
1214
.10.1016/j.joca.2018.04.011
21.
Tan
,
H. H.
,
Mentiplay
,
B.
,
Quek
,
J. J.-E.
,
Tham
,
A. C. W.
,
Lim
,
L. Z. X.
,
Clark
,
R. A.
,
Woon
,
E. L.
,
Yeh
,
T. T.
,
Tan
,
C. I. C.
, and
Pua
,
Y.-H.
,
2020
, “
Test-Retest Reliability and Variability of Knee Adduction Moment Peak, Impulse and Loading Rate During Walking
,”
Gait Posture
,
80
, pp.
113
116
.10.1016/j.gaitpost.2020.05.029
22.
Wang
,
S.
,
Chan
,
K. H.
,
Lam
,
R. H.
,
Yuen
,
D. N.
,
Fan
,
C. K.
,
Chu
,
T. T.
,
Baur
,
H.
, and
Cheung
,
R. T.
,
2019
, “
Effects of Foot Progression Angle Adjustment on External Knee Adduction Moment and Knee Adduction Angular Impulse During Stair Ascent and Descent
,”
Hum. Mov. Sci.
,
64
, pp.
213
220
.10.1016/j.humov.2019.02.004
23.
Tomoya
,
T.
,
Mutsuaki
,
E.
,
Takuma
,
I.
,
Yuta
,
T.
, and
Masayoshi
,
K.
,
2019
, “
A Mathematical Modelling Study Investigating the Influence of Knee Joint Flexion Angle and Extension Moment on Patellofemoral Joint Reaction Force and Stress
,”
Knee
,
26
(
6
), pp.
1323
1329
.10.1016/j.knee.2019.10.010
24.
Nie
,
Y.
,
Wang
,
H.
,
Xu
,
B.
,
Zhou
,
Z.
,
Shen
,
B.
, and
Pei
,
F.
,
2019
, “
The Relationship Between Knee Adduction Moment and Knee Osteoarthritis Symptoms According to Static Alignment and Pelvic Drop
,”
Biomed. Res. Int.
,
2019
, pp.
1
8
.10.1155/2019/7603249
25.
Konrath
,
J. M.
,
Karatsidis
,
A.
,
Schepers
,
H. M.
,
Bellusci
,
G.
,
de Zee
,
M.
, and
Andersen
,
M. S.
,
2019
, “
Estimation of the Knee Adduction Moment and Joint Contact Force During Daily Living Activities Using Inertial Motion Capture
,”
Sensors
,
19
(
7
), p.
1681
.10.3390/s19071681
26.
Luc-Harkey
,
B. A.
,
Franz
,
J. R.
,
Blackburn
,
J. T.
,
Padua
,
D. A.
,
Hackney
,
A. C.
, and
Pietrosimone
,
B.
,
2018
, “
Real-Time Biofeedback Can Increase and Decrease Vertical Ground Reaction Force, Knee Flexion Excursion, and Knee Extension Moment During Walking in Individuals With Anterior Cruciate Ligament Reconstruction
,”
J. Biomech.
,
76
, pp.
94
102
.10.1016/j.jbiomech.2018.05.043
27.
Telfer
,
S.
,
Lange
,
M. J.
, and
Sudduth
,
A. S. M.
,
2017
, “
Factors Influencing Knee Adduction Moment Measurement: A Systematic Review and Meta-Regression Analysis
,”
Gait Posture
,
58
, pp.
333
339
.10.1016/j.gaitpost.2017.08.025
28.
Teng
,
H. L.
,
MacLeod
,
T. D.
,
Link
,
T. M.
,
Majumdar
,
S.
, and
Souza
,
R. B.
,
2015
, “
Higher Knee Flexion Moment During the Second Half of the Stance Phase of Gait is Associated With the Progression of Osteoarthritis of the Patellofemoral Joint on Magnetic Resonance Imaging
,”
J. Orthop. Sports Phys. Ther.
,
45
(
9
), pp.
656
664
.10.2519/jospt.2015.5859
29.
Creaby
,
M. W.
,
2015
, “
It's Not All About the Knee Adduction Moment: The Role of the Knee Flexion Moment in Medial Knee Joint Loading
,”
Osteoarthritis Cartilage
,
23
(
7
), pp.
1038
1040
.10.1016/j.joca.2015.03.032
30.
Asay
,
J. L.
,
Erhart-Hledik
,
J. C.
, and
Andriacchi
,
T. P.
,
2018
, “
Changes in the Total Knee Joint Moment in Patients With Medial Compartment Knee Osteoarthritis Over 5 Years
,”
J. Orthop. Res.
,
36
(
9
), pp.
2373
2379
.10.1002/jor.23908
31.
Chang
,
A. H.
,
Moisio
,
K. C.
,
Chmiel
,
J. S.
,
Eckstein
,
F.
,
Guermazi
,
A.
,
Prasad
,
P. V.
,
Zhang
,
Y.
, et al.
2015
, “
External Knee Adduction and Flexion Moments During Gait and Medial Tibiofemoral Disease Progression in Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
23
(
7
), pp.
1099
1106
.10.1016/j.joca.2015.02.005
32.
Chehab
,
E. F.
,
Favre
,
J.
,
Erhart-Hledik
,
J. C.
, and
Andriacchi
,
T. P.
,
2014
, “
Baseline Knee Adduction and Flexion Moments During Walking Are Both Associated With 5 Year Cartilage Changes in Patients With Medial Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
22
(
11
), pp.
1833
1839
.10.1016/j.joca.2014.08.009
33.
Erhart-Hledik
,
J. C.
,
Chehab
,
E. F.
,
Asay
,
J. L.
,
Favre
,
J.
,
Chu
,
C. R.
, and
Andriacchi
,
T. P.
,
2021
, “
Longitudinal Changes in Tibial and Femoral Cartilage Thickness Are Associated With Baseline Ambulatory Kinetics and Cartilage Oligomeric Matrix Protein (COMP) Measures in an Asymptomatic Aging Population
,”
Osteoarthritis Cartilage
,
29
(
5
), pp.
687
696
.10.1016/j.joca.2021.02.006
34.
Holder
,
J.
,
Trinler
,
U.
,
Meurer
,
A.
, and
Stief
,
F.
,
2020
, “
A Systematic Review of the Associations Between Inverse Dynamics and Musculoskeletal Modeling to Investigate Joint Loading in a Clinical Environment
,”
Front. Bioeng. Biotechnol.
,
8
, p.
603907
.10.3389/fbioe.2020.603907
35.
Shull
,
P. B.
,
Lurie
,
K. L.
,
Cutkosky
,
M. R.
, and
Besier
,
T. F.
,
2011
, “
Training Multi-Parameter Gaits to Reduce the Knee Adduction Moment With Data-Driven Models and Haptic Feedback
,”
J. Biomech.
,
44
(
8
), pp.
1605
1609
.10.1016/j.jbiomech.2011.03.016
36.
Barrios
,
J. A.
,
Crossley
,
K. M.
, and
Davis
,
I. S.
,
2010
, “
Gait Retraining to Reduce the Knee Adduction Moment Through Real-Time Visual Feedback of Dynamic Knee Alignment
,”
J. Biomech.
,
43
(
11
), pp.
2208
2213
.10.1016/j.jbiomech.2010.03.040
37.
Richards
,
R.
,
van den Noort
,
J. C.
,
van der Esch
,
M.
,
Booij
,
M. J.
, and
Harlaar
,
J.
,
2018
, “
Gait Retraining Using Real-Time Feedback in Patients With Medial Knee Osteoarthritis: Feasibility and Effects of a Six-Week Gait Training Program
,”
Knee
,
25
(
5
), pp.
814
824
.10.1016/j.knee.2018.05.014
38.
Cui
,
W.
,
Wang
,
C.
,
Chen
,
W.
,
Guo
,
Y.
,
Jia
,
Y.
,
Du
,
W.
, and
Wang
,
C.
,
2019
, “
Effects of Toe-Out and Toe-In Gaits on Lower-Extremity Kinematics, Dynamics, and Electromyography
,”
Appl. Sci.
,
9
(
23
), p.
5245
.10.3390/app9235245
39.
Holder
,
J.
,
Drongelen
,
S.
,
Meurer
,
A.
, and
Stief
,
F.
,
2020
, “
Statistical Comparison of Contact Forces and Moments in the Knee Joint During Walking in Participants With and Without Valgus Malalignment
,”
ESMAC: Gait Posture
,
81
, pp.
155
156
.10.1016/j.gaitpost.2020.07.112
40.
Eskinazi
,
I.
, and
Fregly
,
B. J.
,
2016
, “
An Open-Source Toolbox for Surrogate Modeling of Joint Contact Mechanics
,”
IEEE Trans. Biomed. Eng.
,
63
(
2
), pp.
269
277
.10.1109/TBME.2015.2455510
41.
Xu
,
H.
,
Bloswick
,
D.
, and
Merryweather
,
A.
,
2015
, “
An Improved OpenSim Gait Model With Multiple Degrees of Freedom Knee Joint and Knee Ligaments
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1217
1224
.10.1080/10255842.2014.889689
42.
Martelli
,
S.
,
Valente
,
G.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2015
, “
Sensitivity of a Subject-Specific Musculoskeletal Model to the Uncertainties on the Joint Axes Location
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1555
1563
.10.1080/10255842.2014.930134
43.
Lerner
,
Z. F.
,
DeMers
,
M. S.
,
Delp
,
S. L.
, and
Browning
,
R. C.
,
2015
, “
How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces
,”
J. Biomech.
,
48
(
4
), pp.
644
650
.10.1016/j.jbiomech.2014.12.049
44.
Knarr
,
B. A.
, and
Higginson
,
J. S.
,
2015
, “
Practical Approach to Subject-Specific Estimation of Knee Joint Contact Force
,”
J. Biomech.
,
48
(
11
), pp.
2897
2902
.10.1016/j.jbiomech.2015.04.020
45.
Gerus
,
P.
,
Sartori
,
M.
,
Besier
,
T. F.
,
Fregly
,
B. J.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
,
D'Lima
,
D. D.
, and
Lloyd
,
D. G.
,
2013
, “
Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces
,”
J. Biomech.
,
46
(
16
), pp.
2778
2786
.10.1016/j.jbiomech.2013.09.005
46.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
47.
Otten
,
E.
,
2003
, “
Inverse and Forward Dynamics: Models of Multi-Body Systems
,”
Philos. Trans. R. Soc., B
,
358
(
1437
), pp.
1493
1500
.10.1098/rstb.2003.1354
48.
Hart
,
D. A.
,
Martin
,
C. R.
,
Scott
,
M.
, and
Shrive
,
N. G.
,
2021
, “
The Instrumented Sheep Knee to Elucidate Insights Into Osteoarthritis Development and Progression: A Sensitive and Reproducible Platform for Integrated Research Efforts
,”
Clin. Biomech.
,
87
, p.
105404
.10.1016/j.clinbiomech.2021.105404
49.
Demers
,
M. S.
,
Pal
,
S.
, and
Delp
,
S. L.
,
2014
, “
Changes in Tibiofemoral Forces Due to Variations in Muscle Activity During Walking
,”
J. Orthop. Res.
,
32
(
6
), pp.
769
776
.10.1002/jor.22601
50.
Lerner
,
Z. F.
,
Haight
,
D. J.
,
DeMers
,
M. S.
,
Board
,
W. J.
, and
Browning
,
R. C.
,
2014
, “
The Effects of Walking Speed on Tibiofemoral Loading Estimated Via Musculoskeletal Modeling
,”
J. Appl. Biomech.
,
30
(
2
), pp.
197
205
.10.1123/jab.2012-0206
51.
Steele
,
K. M.
,
Demers
,
M. S.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2012
, “
Compressive Tibiofemoral Force During Crouch Gait
,”
Gait Posture
,
35
(
4
), pp.
556
560
.10.1016/j.gaitpost.2011.11.023
52.
Seth
,
A.
,
Sherman
,
M.
,
Reinbolt
,
J. A.
, and
Delp
,
S. L.
,
2011
, “
OpenSim: A Musculoskeletal Modeling and Simulation Framework for in Silico Investigations and Exchange
,”
Procedia IUTAM
,
2
, pp.
212
232
.10.1016/j.piutam.2011.04.021
53.
Gu
,
W.
, and
Pandy
,
M. G.
,
2020
, “
Direct Validation of Human Knee-Joint Contact Mechanics Derived From Subject-Specific Finite-Element Models of the Tibiofemoral and Patellofemoral Joints
,”
ASME J. Biomech. Eng.
,
142
(
7
), p.
071001
.10.1115/1.4045594
54.
Meireles
,
S.
,
De Groote
,
F.
,
Reeves
,
N. D.
,
Verschueren
,
S.
,
Maganaris
,
C.
,
Luyten
,
F.
, and
Jonkers
,
I.
,
2016
, “
Knee Contact Forces Are Not Altered in Early Knee Osteoarthritis
,”
Gait Posture
,
45
, pp.
115
120
.10.1016/j.gaitpost.2016.01.016
55.
Haight
,
D. J.
,
Lerner
,
Z. F.
,
Board
,
W. J.
, and
Browning
,
R. C.
,
2014
, “
A Comparison of Slow, Uphill and Fast, Level Walking on Lower Extremity Biomechanics and Tibiofemoral Joint Loading in Obese and Nonobese Adults
,”
J. Orthop. Res.
,
32
(
2
), pp.
324
330
.10.1002/jor.22497
56.
Richards
,
C.
, and
Higginson
,
J. S.
,
2010
, “
Knee Contact Force in Subjects With Symmetrical OA Grades: Differences Between OA Severities
,”
J. Biomech.
,
43
(
13
), pp.
2595
2600
.10.1016/j.jbiomech.2010.05.006
57.
Winby
,
C. R.
,
Lloyd
,
D. G.
,
Besier
,
T. F.
, and
Kirk
,
T. B.
,
2009
, “
Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait
,”
J. Biomech.
,
42
(
14
), pp.
2294
2300
.10.1016/j.jbiomech.2009.06.019
58.
Uicker
,
J. J.
, and
Sheth
,
P. N.
,
2007
,
Matrix Methods in the Design Analysis of Multibody Systems
,
University of Virginia
,
Charlottesville, VA
.
59.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
60.
Taylor
,
W. R.
,
Heller
,
M. O.
,
Bergmann
,
G.
, and
Duda
,
G. N.
,
2004
, “
Tibio-Femoral Loading During Human Gait and Stair Climbing
,”
J. Orthop. Res.
,
22
(
3
), pp.
625
632
.10.1016/j.orthres.2003.09.003
61.
Hurwitz
,
D. E.
,
Sumner
,
D. R.
,
Andriacchi
,
T. P.
, and
Sugar
,
D. A.
,
1998
, “
Dynamic Knee Loads During Gait Predict Proximal Tibial Bone Distribution
,”
J. Biomech.
,
31
(
5
), pp.
423
430
.10.1016/S0021-9290(98)00028-1
62.
Schipplein
,
O. D.
, and
Andriacchi
,
T. P.
,
1991
, “
Interaction Between Active and Passive Knee Stabilizers During Level Walking
,”
J. Orthop. Res.
,
9
(
1
), pp.
113
119
.10.1002/jor.1100090114
63.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
(
1
), pp.
51
61
.10.1016/0021-9290(70)90050-3
64.
Herzog
,
W.
,
Longino
,
D.
, and
Clark
,
A.
,
2003
, “
The Role of Muscles in Joint Adaptation and Degeneration
,”
Langenbecks Arch. Surg.
,
388
(
5
), pp.
305
315
.10.1007/s00423-003-0402-6
65.
Knarr
,
B. A.
,
Higginson
,
J. S.
, and
Zeni
,
J. A.
,
2016
, “
Change in Knee Contact Force With Simulated Change in Body Weight
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
3
), pp.
320
323
.10.1080/10255842.2015.1018193
66.
Cortes
,
N.
,
Quammen
,
D.
,
Lucci
,
S.
,
Greska
,
E.
, and
Onate
,
J.
,
2012
, “
A Functional Agility Short-Term Fatigue Protocol Changes Lower Extremity Mechanics
,”
J. Sports Sci.
,
30
(
8
), pp.
797
805
.10.1080/02640414.2012.671528
67.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
,
2005
, “
A New Method for Estimating Joint Parameters From Motion Data
,”
J. Biomech.
,
38
(
1
), pp.
107
116
.10.1016/j.jbiomech.2004.03.009
68.
Eddo
,
O. O.
,
Lindsey
,
B. W.
,
Caswell
,
S. V.
,
Prebble
,
M.
, and
Cortes
,
N.
,
2020
, “
Unintended Changes in Contralateral Limb as a Result of Acute Gait Modification
,”
J. Appl. Biomech.
,
36
(
1
), pp.
13
19
.10.1123/jab.2019-0031
69.
Steele
,
K. M.
,
Tresch
,
M. C.
, and
Perreault
,
E. J.
,
2015
, “
Consequences of Biomechanically Constrained Tasks in the Design and Interpretation of Synergy Analyses
,”
J. Neurophysiol.
,
113
(
7
), pp.
2102
2113
.10.1152/jn.00769.2013
70.
Patil
,
I.
,
2021
, “
Visualizations With Statistical Details: The ‘Ggstatsplot’ Approach
,”
J. Open Source Software
,
6
(
61
), p.
3167
.10.21105/joss.03167
71.
Gerbrands
,
T. A.
,
Pisters
,
M. F.
,
Theeven
,
P. J. R.
,
Verschueren
,
S.
, and
Vanwanseele
,
B.
,
2017
, “
Lateral Trunk Lean and Medializing the Knee as Gait Strategies for Knee Osteoarthritis
,”
Gait Posture
,
51
, pp.
247
253
.10.1016/j.gaitpost.2016.11.014
72.
Tokuda
,
K.
,
Anan
,
M.
,
Takahashi
,
M.
,
Sawada
,
T.
,
Tanimoto
,
K.
,
Kito
,
N.
, and
Shinkoda
,
K.
,
2018
, “
Biomechanical Mechanism of Lateral Trunk Lean Gait for Knee Osteoarthritis Patients
,”
J Biomech.
,
66
, pp.
10
17
.10.1016/j.jbiomech.2017.10.016
73.
Pizzolato
,
C.
,
Reggiani
,
M.
,
Saxby
,
D. J.
,
Ceseracciu
,
E.
,
Modenese
,
L.
, and
Lloyd
,
D. G.
,
2017
, “
Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
9
), pp.
1612
1621
.10.1109/TNSRE.2017.2683488
74.
Schache
,
A. G.
,
Fregly
,
B. J.
,
Crossley
,
K. M.
,
Hinman
,
R. S.
, and
Pandy
,
M. G.
,
2008
, “
The Effect of Gait Modification on the External Knee Adduction Moment is Reference Frame Dependent
,”
Clin. Biomech.
,
23
(
5
), pp.
601
608
.10.1016/j.clinbiomech.2007.12.008
75.
Fregly
,
B. J.
,
D'Lima
,
D. D.
, and
Colwell
,
C. W.
, Jr.
,
2009
, “
Effective Gait Patterns for Offloading the Medial Compartment of the Knee
,”
J. Orthop. Res.
,
27
(
8
), pp.
1016
1021
.10.1002/jor.20843
76.
Meyer
,
A. J.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
,
2013
, “
Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces During Gait?
,”
J. Orthop. Res.
,
31
(
6
), pp.
921
929
.10.1002/jor.22304
77.
Uhlrich
,
S. D.
,
Silder
,
A.
,
Beaupre
,
G. S.
,
Shull
,
P. B.
, and
Delp
,
S. L.
,
2018
, “
Subject-Specific Toe-in or Toe-Out Gait Modifications Reduce the Larger Knee Adduction Moment Peak More Than a Non-Personalized Approach
,”
J. Biomech.
,
66
, pp.
103
110
.10.1016/j.jbiomech.2017.11.003
78.
Hoch
,
M. C.
, and
Weinhandl
,
J. T.
,
2017
, “
Effect of Valgus Knee Alignment on Gait Biomechanics in Healthy Women
,”
J. Electromyogr Kinesiol
,
35
, pp.
17
23
.10.1016/j.jelekin.2017.05.003
79.
Clement
,
J.
,
Toliopoulos
,
P.
,
Hagemeister
,
N.
,
Desmeules
,
F.
,
Fuentes
,
A.
, and
Vendittoli
,
P. A.
,
2018
, “
Healthy 3D Knee Kinematics During Gait: Differences Between Women and Men, and Correlation With x-Ray Alignment
,”
Gait Posture
,
64
, pp.
198
204
.10.1016/j.gaitpost.2018.06.024
80.
Sharma
,
L.
,
Lou
,
C.
,
Cahue
,
S.
, and
Dunlop
,
D. D.
,
2000
, “
The Mechanism of the Effect of Obesity in Knee Osteoarthritis: The Mediating Role of Malalignment
,”
Arthritis Rheum.
,
43
(
3
), pp.
568
75
.10.1002/1529-0131(200003)43:3<568::AID-ANR13>3.0.CO;2-E
81.
Silva
,
F. R.
,
Muniz
,
A. M. d. S.
,
Cerqueira
,
L. S.
, and
Nadal
,
J.
,
2018
, “
Biomechanical Alterations of Gait on Overweight Subjects
,”
Res. Biomed. Eng.
,
34
(
4
), pp.
291
298
.10.1590/2446-4740.180017
82.
Lynn
,
S. K.
,
Kajaks
,
T.
, and
Costigan
,
P. A.
,
2008
, “
The Effect of Internal and External Foot Rotation on the Adduction Moment and Lateral-Medial Shear Force at the Knee During Gait
,”
J. Sci. Med. Sport
,
11
(
5
), pp.
444
451
.10.1016/j.jsams.2007.03.004
83.
Bechard
,
D. J.
,
Birmingham
,
T. B.
,
Zecevic
,
A. A.
,
Jones
,
I. C.
,
Giffin
,
J. R.
, and
Jenkyn
,
T. R.
,
2012
, “
Toe-Out, Lateral Trunk Lean, and Pelvic Obliquity During Prolonged Walking in Patients With Medial Compartment Knee Osteoarthritis and Healthy Controls
,”
Arthritis Care Res.
,
64
(
4
), pp.
525
532
.10.1002/acr.21584
84.
Hunt
,
M. A.
, and
Takacs
,
J.
,
2014
, “
Effects of a 10-Week Toe-Out Gait Modification Intervention in People With Medial Knee Osteoarthritis: A Pilot, Feasibility Study
,”
Osteoarthritis Cartilage
,
22
(
7
), pp.
904
911
.10.1016/j.joca.2014.04.007
85.
Charlton
,
J. M.
,
Hatfield
,
G. L.
,
Guenette
,
J. A.
, and
Hunt
,
M. A.
,
2018
, “
Toe-in and Toe-Out Walking Require Different Lower Limb Neuromuscular Patterns in People With Knee Osteoarthritis
,”
J. Biomech.
,
76
, pp.
112
118
.10.1016/j.jbiomech.2018.05.041
86.
Prebble
,
M.
,
Wei
,
Q.
,
Eddo
,
O.
,
Lindsey
,
B.
,
Caswell
,
S. V.
, and
Cortes
,
N.
,
2019
, “
Preliminary Analysis: The Effects of Gait Interventions on Knee Joint Contact Forces in Healthy Adults
,”
Med. Sci. Sports Exercise
,
51
(
6S
), pp.
703
703
.10.1249/01.mss.0000562592.89136.7b
87.
Uhlrich
,
S. D.
,
Jackson
,
R. W.
,
Seth
,
A.
,
Kolesar
,
J. A.
, and
Delp
,
S. L.
,
2022
, “
Muscle Coordination Retraining Inspired by Musculoskeletal Simulations Reduces Knee Contact Force
,”
Sci. Rep.
,
12
(
1
), p.
9842
.10.1038/s41598-022-13386-9
88.
Tsushima
,
H.
,
Morris
,
M. E.
, and
McGinley
,
J.
,
2003
, “
Test-Retest Reliability and Inter-Tester Reliability of Kinematic Data From a Three-Dimensional Gait Analysis System
,”
J. Jpn. Phys. Ther. Assoc.
,
6
(
1
), pp.
9
17
.10.1298/jjpta.6.9
You do not currently have access to this content.