Abstract

Previous experimental flow studies have demonstrated a delay (∼20%) in transition to turbulence for whole blood compared to a Newtonian analog fluid in both a straight pipe and eccentric stenosis model with ridged walls. The impact of wall compliance on the transition to turbulence of blood compared to Newtonian analog and on wall vibration is unknown. The present study employed flexible walls downstream of an eccentric stenosis model and examined the wall vibration during the transition to turbulence with whole blood and a Newtonian analog. Measurements of tube wall vibration velocity (WVV) were used as an indicator of the turbulence level within the flexible tube. WVV was measured at 5, 10, and 15 diameters downstream of the stenosis using a laser Doppler vibrometer at Reynolds numbers 0, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, and 750. The root mean squares (RMS) of the measured WVV were utilized as an indirect measure of fluid velocity fluctuations present at that location, and hence, an indicator of transition to turbulence. WVV RMS was near-constant until approximately Reynolds number 400. It increased monotonically with Reynolds number for both whole blood and the Newtonian fluid. No differences in the transition to turbulence were observed between whole blood and the Newtonian fluid, as the WVV RMS curves were remarkably similar in shape. This result suggests that rheology had minimal impact on the WVV downstream of a stenosis for transition to turbulence since the fluids had a similar level of vibration.

References

1.
Baskurt
,
O.
, and
Meiselman
,
H.
,
2003
, “
Blood Rheology and Hemodynamics
,”
Semin. Thromb. Hemostasis
,
29
(
5
), pp.
435
–4
50
.10.1055/s-2003-44551
2.
Nader
,
E.
,
Skinner
,
S. C.
,
Romana
,
M.
,
Fort
,
R.
,
Lemonne
,
N.
,
Guillot
,
N.
,
Gauthier
,
A.
, et al.,
2019
, “
Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise
,”
Front. Physiol.
,
10
, pp. 1–14.10.3389/fphys.2019.01329
3.
Biswas
,
D.
,
Casey
,
D. M.
,
Crowder
,
D. C.
,
Steinman
,
D. A.
,
Yun
,
Y. H.
, and
Loth
,
F.
,
2016
, “
Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
,
138
(
7
), p.
071001
.10.1115/1.4033474
4.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1983
, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Numbers
,”
J. Biomech.
,
16
(
7
), pp.
505
516
.10.1016/0021-9290(83)90065-9
5.
Varghese
,
S.
,
Frankel
,
S.
, and
Fischer
,
P.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows, Part 1: Steady Flow
,”
J. Fluid Mech.
,
582
, pp.
253
280
.10.1017/S0022112007005848
6.
Khan
,
M. O.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D.
,
2019
, “
Direct Numerical Simulation of Laminar-Turbulent Transition in a Non-Axisymmetric Stenosis Model for Newtonian vs. Shear-Thinning Non-Newtonian Rheologies
,”
Flow, Turbul. Combust.
,
102
(
1
), pp.
43
72
.10.1007/s10494-018-9905-7
7.
Costa
,
R. P.
,
Nwotchouang
,
S. T. B.
,
Yao
,
J.
,
Biswas
,
D.
,
Casey
,
D.
,
McKenzie
,
R.
,
Steinman
,
D. A.
, and
Loth
,
F.
,
2022
, “
Transition to Turbulence Downstream of a Stenosis for Whole Blood and a Newtonian Analog Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
, 144(
3
), p. 031008.10.1115/1.4052370
8.
Gad-el-Hak
,
M.
,
2002
, “
Compliant Coatings for Drag Reduction
,”
Prog. Aerosp. Sci.
,
38
(
1
), pp.
77
99
.10.1016/S0376-0421(01)00020-3
9.
Lee
,
S.
,
Fischer
,
P.
,
Loth
,
F.
,
Royston
,
T.
,
Grogan
,
J. K.
, and
Bassiouny
,
H. S.
,
2005
, “
Flow-Induced Vein-Wall Vibration in an Arteriovenous Graft
,”
J. Fluids Struct.
,
20
(
6
), pp.
837
852
.10.1016/j.jfluidstructs.2005.04.006
10.
Loth
,
F.
,
Fischer
,
P. F.
,
Arslan
,
N.
,
Bertram
,
C. D.
,
Lee
,
S. E.
,
Royston
,
T. J.
,
Shaalan
,
W. E.
, and
Bassiouny
,
H. S.
,
2003
, “
Transitional Flow at the Venous Anastomosis of an Arteriovenous Graft: Potential Activation of the ERK1/2 Mechanotransduction Pathway
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
49
61
.10.1115/1.1537737
11.
Fillinger
,
M.
,
Reinitz
,
E. R.
,
Schwartz
,
R.
,
Resetarits
,
D. E.
,
Paskanik
,
A.
,
Bruch
,
D.
, and
Bredenberg
,
C.
,
1990
, “
Graft Geometry and Venous Intimal-Medial Hyperplasia in Arteriovenous Loop Grafts
,”
J. Vasc. Surg.
,
11
(
4
), pp.
556
566
.10.1016/0741-5214(90)90302-Q
12.
Kirkeeide
,
R.
,
Young
,
D.
, and
Cholvin
,
N. R.
,
1977
, “
Wall Vibrations Induced by Flow Through Simulated Stenosis in Models and Arteries
,”
J. Biomech.
,
10
(
7
), pp.
431
441
.10.1016/0021-9290(77)90020-3
13.
Whitcomb
,
J. E.
,
Amini
,
R.
,
Simha
,
N. K.
, and
Barocas
,
V. H.
,
2011
, “
Anterior-Posterior Asymmetry in Iris Mechanics Measured by Indentation
,”
Exp. Eye Res.
93
(
4
), pp.
475
481
.10.1016/j.exer.2011.06.009
14.
Hayes
,
W. C.
,
Keer
,
L. M.
,
Herrmann
,
G.
, and
Mockros
,
L. F.
,
1972
, “
A Mathematical Analysis for Indentation Tests of Articular Cartilage
,”
J. Biomech.
,
5
(
5
), pp.
541
551
.10.1016/0021-9290(72)90010-3
15.
Bergersen
,
A. W.
,
Mortensen
,
M.
, and
Valen-Sendstad
,
K.
,
2019
, “
The FDA Nozzle Benchmark: ‘in Theory There is No Difference Between Theory and Practice, but in Practice There Is’
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
1
), p.
e3150
.10.1002/cnm.3150
16.
Ballyk
,
P. D.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
,
1994
, “
Simulation of non-Newtonian Blood Flow in an End-to-Side Anastomosis
,”
Biorheology
,
31
(
5
), pp.
565
586
.10.3233/BIR-1994-31505
17.
Haley
,
A. L.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2021
, “
On Delayed Transition to Turbulence in an Eccentric Stenosis Model for Clean vs. noisy High-Fidelity CFD
,”
J. Biomech.
,
125
, p.
110588
.10.1016/j.jbiomech.2021.110588
You do not currently have access to this content.