Abstract

Musculoskeletal modeling uses metabolic models to estimate energy expenditure of human locomotion. However, accurate estimation of energy expenditure is challenging, which may be due to uncertainty about the true energy cost of eccentric and concentric muscle contractions. The purpose of this study was to validate three commonly used metabolic models, using isolated isokinetic concentric and eccentric knee extensions/flexions. Five resistance-trained adult males (25.6 ± 2.4 year, 90.6 ± 7.5 kg, 1.81 ± 0.09 m) performed 150 repetitions at four different torques in a dynamometer. Indirect calorimetry was used to measure energy expenditure during these muscle contractions. All three models underestimated the energy expenditure (compared with indirect calorimetry) for up to 55.8% and 78.5% for concentric and eccentric contractions, respectively. Further, the coefficient of determination was in general low for eccentric contractions (R2 < 0.46) indicating increases in the absolute error with increases in load. These results show that the metabolic models perform better when predicting energy expenditure of concentric contractions compared with eccentric contractions. Thus, more knowledge about the relationship between energy expenditure and eccentric work is needed to optimize the metabolic models for musculoskeletal modeling of human locomotion.

References

1.
Margaria
,
R.
,
1968
, “
Positive and Negative Work Performances and Their Efficiencies in Human Locomotion
,”
Int. Z. Angew. Physiol.
,
25
(
4
), pp.
339
351
.110.1007/bf00699624
2.
Bhargava
,
L. J.
,
Pandy
,
M. G.
, and
Anderson
,
F. C.
,
2004
, “
A Phenomenological Model for Estimating Metabolic Energy Consumption in Muscle Contraction
,”
J. Biomech.
,
37
(
1
), pp.
81
88
.10.1016/S0021-9290(03)00239-2
3.
Umberger
,
B. R.
,
2010
, “
Stance and Swing Phase Costs in Human Walking
,”
J. R. Soc. Interface
,
7
(
50
), pp.
1329
1340
.10.1098/rsif.2010.0084
4.
Umberger
,
B. R.
,
Gerritsen
,
K. G. M.
, and
Martin
,
P. E.
,
2003
, “
A Model of Human Muscle Energy Expenditure
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
2
), pp.
99
111
.10.1080/1025584031000091678
5.
Hawkins
,
D.
, and
Molé
,
P.
,
1997
, “
Modeling Energy Expenditure Associated With Isometric, Concentric, and Eccentric Muscle Action at the Knee
,”
Ann. Biomed. Eng.
,
25
(
5
), pp.
822
830
.10.1007/BF02684166
6.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walkingk
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
7.
Koelewijn
,
A. D.
,
Heinrich
,
D.
, and
van den Bogert
,
A. J.
,
2019
, “
Metabolic Cost Calculations of Gait Using Musculoskeletal Energy Models, a Comparison Study
,”
Plos One
,
14
(
9
), p.
e0222037
.10.1371/journal.pone.0222037
8.
Miller
,
R. H.
,
2014
, “
A Comparison of Muscle Energy Models for Simulating Human Walking in Three Dimensions
,”
J. Biomech.
,
47
(
6
), pp.
1373
1381
.10.1016/j.jbiomech.2014.01.049
9.
Neptune
,
R. R.
,
Sasaki
,
K.
, and
Kautz
,
S. A.
,
2008
, “
The Effect of Walking Speed on Muscle Function and Mechanical Energetics
,”
Gait Posture
,
28
(
1
), pp.
135
143
.10.1016/j.gaitpost.2007.11.004
10.
Herzog
,
W.
,
2014
, “
Mechanisms of Enhanced Force Production in Lengthening (Eccentric) Muscle Contractions
,”
J. Appl. Physiol.
,
116
(
11
), pp.
1407
1417
.10.1152/japplphysiol.00069.2013
11.
Tsianos
,
G. A.
, and
MacFadden
,
L. N.
,
2016
, “
Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement
,”
PLoS Comput. Biol.
,
12
(
6
), p.
e1004911
.10.1371/journal.pcbi.1004911
12.
Peronnet
,
F.
, and
Massicotte
,
D.
,
1991
, “
Table of Nonprotein Respiratory Quotient: An Update
,”
Can. J. Sport Sci.
,
16
(
1
), pp.
23
29
.https://pubmed.ncbi.nlm.nih.gov/1645211/
13.
Lund
,
M. E.
,
Tørholm
,
S.
,
Pieri
,
D. E.
,
Simonsen
,
S. T.
,
Iversen
,
K.
, and
Engelund
,
B. K.
,
2021
, “
The AnyBody Managed Model Repository (AMMR)
,” Zenodo, Genève, Switzerland.10.5281/zenodo.4305559
14.
Carbone
,
V.
,
Fluit
,
R.
,
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Janssen
,
D.
,
Damsgaard
,
M.
,
Vigneron
,
L.
,
Feilkas
,
T.
,
Koopman
,
H. F. J. M.
, and
Verdonschot
,
N.
,
2015
, “
TLEM 2.0–A Comprehensive Musculoskeletal Geometry Dataset for Subject-Specific Modeling of Lower Extremity
,”
J. Biomech.
,
48
(
5
), pp.
734
741
.10.1016/j.jbiomech.2014.12.034
15.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Model Pract. Theory
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
16.
Bolstad
,
G.
, and
Ersland
,
A.
,
1978
, “
Energy Metabolism in Different Human Skeletal Muscles During Voluntary Isometric Contractions
,”
Eur. J. Appl. Physiol.
,
38
(
3
), pp.
171
179
.10.1007/BF00430075
17.
Stienen
,
G. J.
,
Kiers
,
J. L.
,
Bottinelli
,
R.
, and
Reggiani
,
C.
,
1996
, “
Myofibrillar ATPase Activity in Skinned Human Skeletal Muscle Fibres: Fibre Type and Temperature Dependence
,”
J. Physiol.
,
493
(
2
), pp.
299
307
.10.1113/jphysiol.1996.sp021384
18.
Bigland-Ritchie
,
B.
, and
Woods
,
J. J.
,
1976
, “
Integrated Electromyogram and Oxygen Uptake During Positive and Negative Work
,”
J. Physiol.
,
260
(
2
), pp.
267
277
.10.1113/jphysiol.1976.sp011515
19.
Ryschon
,
T. W.
,
Fowler
,
M. D.
,
Wysong
,
R. E.
,
Anthony
,
A. R.
, and
Balaban
,
R. S.
,
1997
, “
Efficiency of Human Skeletal Muscle In Vivo: Comparison of Isometric, Concentric, and Eccentric Muscle Action
,”
J. Appl. Physiol.
,
83
(
3
), pp.
867
874
.10.1152/jappl.1997.83.3.867
20.
Enoka
,
R. M.
,
1996
, “
Eccentric Contractions Require Unique Activation Strategies by the Nervous System
,”
J. Appl. Physiol.
,
81
(
6
), pp.
2339
2346
.10.1152/jappl.1996.81.6.2339
21.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. Lond. Ser. B Biol. Sci.
,
126
, pp.
136
195
.10.1098/rspb.1938.0050
22.
Poole
,
D. C.
,
Gaesser
,
G. A.
,
Hogan
,
M. C.
,
Knight
,
D. R.
, and
Wagner
,
P. D.
,
1992
, “
Pulmonary and Leg VO2 During Submaximal Exercise: Implications for Muscular Efficiency
,”
J. Appl. Physiol.
,
72
(
2
), pp.
805
810
.10.1152/jappl.1992.72.2.805
23.
Tarnopolsky
,
M. A.
,
2000
, “
Gender Differences in Metabolism; Nutrition and Supplements
,”
J. Sci. Med. Sport
,
3
(
3
), pp.
287
298
.10.1016/S1440-2440(00)80038-9
24.
Hunter
,
G. R.
,
Singh
,
H.
,
Carter
,
S. J.
,
Bryan
,
D. R.
, and
Fisher
,
G.
,
2019
, “
Sarcopenia and Its Implications for Metabolic Health
,”
J. Obesity
,
2019
, pp.
1
10
.10.1155/2019/8031705
25.
Palmer
,
A. K.
, and
Jensen
,
O. M. D.
,
2022
, “
Metabolic Changes in Aging Humans: Current Evidence and Therapeutic Strategies
,”
J. Clinical Invest.
,
132
(
16
), p.
e158451
.10.1172/JCI158451
26.
Singla
,
P.
,
Animesh
,
B.
, and
Parkash
,
O. A. A.
,
2010
, “
Metabolic Effects of Obesity: A Review
,”
World J. Diabetes
,
1
(
3
), pp.
76
88
.10.4239/wjd.v1.i3.76
27.
MacInnis
,
M. J.
,
Egan
,
B.
, and
Gibala
,
O. M. J.
,
2022
, “
The Effect of Training on Skeletal Muscle and Exercise Metabolism
,”
Exercise Metabolism Physiology in Health and Disease
,
Springer
,
Cham
, pp.
215
242
.
You do not currently have access to this content.