Abstract

This paper reports a nonbraided, bioresorbable polycaprolactone (PCL) flow diverter (FD) for the endovascular treatment of aneurysms. Bioresorbable FDs can reduce the risk associated with the permanent metallic FDs as they are resorbed by the body after curing of aneurysms. PCL FDs were designed and fabricated using an in-house hybrid electromelt spinning-fused deposition fabrication unit. Flow diverter's properties, surface qualities, and mechanical characteristics of PCL FDs of 50%, 60%, and 70% porosities were studied using scanning electron microscope (SEM), atomic force microscopy (AFM), and high precision universal testing machine (UTM). The deployability through a clinically relevant catheter was demonstrated in a PDMS aneurysm model. The angiographic visibility of the developed PCL FDs was evaluated using BaSO4 and Bi2O3 coatings of various concentration. The average strut thicknesses were 74.12 ± 6.63 μm, 63.07 ± 1.26 μm, and 56.82 ± 2.09 μm for PCL FDs with 50%, 60%, and 70% porosities, respectively. They average pore areas for the 50%, 60% and 70% porosities FDs were 0.055 ± 0.0056 mm2, 0. 0605 ± 0.0065 mm2, and 0.0712 ± 0.012 mm2, respectively. The surface quality was great with an RMS roughness value of 14.45 nm. The tensile, radial strength, and flexibility were found to be satisfactory and comparable to the nonbraided coronary stents. The developed PCL FDs were highly flexible and demonstrated to be deployable through conventional delivery system as low as 4 Fr catheters in a PDMS aneurysm model. The visibility under X-ray increases with the increasing concentration of coating materials BaSO4 and Bi2O3. The visibility intensity was slightly higher with Bi2O3 coating of PCL FDs. The overall results of the engineering analysis of the developed nonbraided PCL FDs are promising.

References

1.
Nieuwkamp
,
D. J.
,
Setz
,
L. E.
,
Algra
,
A.
,
Linn
,
F. H.
,
de Rooij
,
N. K.
, and
Rinkel
,
G. J. E.
,
2009
, “
Changes in Case Fatality of Aneurysmal Subarachnoid Haemorrhage Over Time, According to Age, Sex, and Region: A Meta-Analysis
,”
Lancet Neurol.
,
8
(
7
), pp.
635
642
.10.1016/S1474-4422(09)70126-7
2.
D'Urso
,
P. I.
,
Lanzino
,
G.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F. K.
,
2011
, “
Flow Diversion for Intracranial Aneurysms: a Review
,”
Stroke
,
42
(
8
), pp.
2363
2368
.10.1161/STROKEAHA.111.620328
3.
Shin
,
D.-S.
,
Carroll
,
C. P.
,
Elghareeb
,
M.
,
Hoh
,
B. L.
, and
Kim
,
B.-T.
,
2020
, “
The Evolution of Flow-Diverting Stents for Cerebral Aneurysms; Historical Review, Modern Application, Complications, and Future Direction
,”
J. Korean Neurosurg. Soc.
,
63
(
2
), pp.
137
152
.10.3340/jkns.2020.0034
4.
Ravindran
,
K.
,
Casabella
,
A. M.
,
Cebral
,
J.
,
Brinjikji
,
W.
,
Kallmes
,
D. F.
, and
Kadirvel
,
R. J. N.
,
2020
, “
Mechanism of Action and Biology of Flow Diverters in the Treatment of Intracranial Aneurysms
,”
Neurosurg.
,
86
(
Suppl_1
), pp.
S13
S19
.10.1093/neuros/nyz324
5.
Brinjikji
,
W.
,
Murad
,
M. H.
,
Lanzino
,
G.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
,
2013
, “
Endovascular Treatment of Intracranial Aneurysms With Flow Diverters: A Meta-Analysis
,”
Stroke
,
44
(
2
), pp.
442
447
.10.1161/STROKEAHA.112.678151
6.
Zhou
,
G.
,
Su
,
M.
,
Yin
,
Y.-L.
, and
Li
,
M.-H.
,
2017
, “
Complications Associated With the Use of Flow-Diverting Devices for Cerebral Aneurysms: A Systematic Review and Meta-Analysis
,”
J. Neurosurg.
42
(
6
), p.
E17
.10.3171/2017.3.FOCUS16450
7.
Aydin
,
K.
,
Barburoglu
,
M.
,
Sencer
,
S.
,
Berdikhojayev
,
M.
,
Coskun
,
B.
, and
Akpek
,
S.
,
2017
, “
Flow Diversion With Low-Profile Braided Stents for the Treatment of Very Small or Uncoilable Intracranial Aneurysms at or Distal to the Circle of Willis
,”
Amer. J. Neurorad.
,
38
(
11
), pp.
2131
2137
.10.3174/ajnr.A5362
8.
Zhu
,
Y.
,
Zhang
,
H.
,
Zhang
,
Y.
,
Wu
,
H.
,
Wei
,
L.
,
Zhou
,
G.
,
Zhang
,
Y.
,
Deng
,
L.
,
Cheng
,
Y.
,
Li
,
M.
,
Santos
,
H. A.
, and
Cui
,
W.
,
2019
, “
Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases
,”
Adv. Mater.
,
31
(
8
), p.
1805452
.10.1002/adma.201805452
9.
Estrade
,
L.
,
Makoyeva
,
A.
,
Darsaut
,
T. E.
,
Ghostine
,
J.
,
Kouznetsov
,
E.
,
Salazkin
,
I.
,
Roy
,
D.
,
Weill
,
A.
, and
Raymond
,
J.
,
2013
, “
In Vitro Reproduction of Device Deformation Leading to Thrombotic Complications and Failure of Flow Diversion
,”
Interv. Neuroradiol.
,
19
(
4
), pp.
432
437
.10.1177/159101991301900405
10.
Sleiman
,
E.
,
Tabet
,
R.
,
Karam
,
B.
,
Ayad
,
D.
, and
Royzman
,
R. J. C.
,
2020
, “
Extremely Late-Stent Thromb. 12 Years after Implantation a Drug-Eluting Stent
,”
Cureus
,
12
(
7
), p.
e9053
.10.7759/cureus.9053
11.
Treiser
,
M.
,
Abramson
,
S.
,
Langer
,
R.
, and
Kohn
,
J.
,
2013
,
Degradable and Resorbable Biomaterials, Biomaterials Science: An Introduction to Materials
, 3rd ed.,
Elsevier Inc.
,
San Diego, CA
, pp.
179
195
.
12.
Li
,
C.
,
Guo
,
C.
,
Fitzpatrick
,
V.
,
Ibrahim
,
A.
,
Zwierstra
,
M. J.
,
Hanna
,
P.
,
Lechtig
,
A.
, et al.,
2019
, “
Design of Biodegradable, Implantable Devices Towards Clinical Translation
,”
Nat. Rev. Materials
,
5
(
1
), pp.
61
81
.10.1038/s41578-019-0150-z
13.
Zong
,
J.
,
He
,
Q.
,
Liu
,
Y.
,
Qiu
,
M.
,
Wu
,
J.
, and
Hu
,
B. J. M. T. B.
,
2022
, “
Advances in the Development of Biodegradable Coronary Stents: A Translational Perspective
,”
Mater. Today Bio.
,
19
(
16
), p.
100368
.10.1016/j.mtbio.2022.100368
14.
Wang
,
K.
,
Yuan
,
S.
,
Zhang
,
X.
,
Liu
,
Q.
,
Zhong
,
Q.
,
Zhang
,
R.
,
Lu
,
P.
, and
Li
,
J.
,
2013
, “
Biodegradable Flow-Diverting Device for the Treatment of Intracranial Aneurysm: Short-Term Results of a Rabbit Experiment
,”
Neuroradiology
,
55
(
5
), pp.
621
628
.10.1007/s00234-013-1150-0
15.
Nishi
,
H.
,
Ishii
,
A.
,
Ono
,
I.
,
Abekura
,
Y.
,
Ikeda
,
H.
,
Arai
,
D.
,
Yamao
,
Y.
, et al.,
2019
, “
Biodegradable Flow Diverter for the Treatment of Intracranial Aneurysms: A Pilot Study Using a Rabbit Aneurysm Model
,”
J. Am. Heart Assoc.
,
8
(
20
), p.
e014074
.10.1161/JAHA.119.014074
16.
Jamshidi
,
M.
,
Rajabian
,
M.
,
Avery
,
M. B.
,
Sundararaj
,
U.
,
Ronsky
,
J.
,
Belanger
,
B.
,
Wong
,
J. H.
, et al.,
2020
, “
A Novel Self-Expanding Primarily Bioabsorbable Braided Flow-Diverting Stent for Aneurysms: Initial Safety Results
,”
J. Neurointerv. Surg.
,
12
(
7
), pp.
700
705
.10.1136/neurintsurg-2019-015555
17.
Onuma
,
Y.
, and
Serruys
,
P. W.
,
2011
, “
Bioresorbable Scaffold: The Advent of a New Era in Percutaneous Coronary and Peripheral Revascularization?
,”
Circulation
,
123
(
7
), pp.
779
797
.10.1161/CIRCULATIONAHA.110.971606
18.
Kassab
,
E.
,
Marquardt
,
A.
,
Neelakantan
,
L.
,
Frotscher
,
M.
,
Schreiber
,
F.
,
Gries
,
T.
,
Jockenhoevel
,
S.
,
Gomes
,
J.
, and
Eggeler
,
G.
,
2014
, “
On the Electropolishing of NiTi Braided Stents–Challenges and Solutions: Über Das Elektropolieren Von Geflochtenen NiTi‐Stents–Herausforderungen Und Lösungen
,”
Materialwissenschaft und Werkstofftechnik
,
45
(
10
), pp.
920
929
.
19.
Zou
,
Q.
,
Xue
,
W.
,
Lin
,
J.
,
Fu
,
Y.
,
Guan
,
G.
,
Wang
,
F.
, and
Wang
,
L.
,
2016
, “
Mechanical Characteristics of Novel Polyester/NiTi Wires Braided Composite Stent for the Medical Application
,”
Results Phys.
,
6
, pp.
440
446
.10.1016/j.rinp.2016.07.007
20.
Tidwell
,
K.
,
Harriet
,
S.
,
Barot
,
V.
,
Bauer
,
A.
,
Vaughan
,
M. B.
, and
Hossan
,
M. R.
,
2021
, “
Design and Analysis of a Biodegradable Polycaprolactone Flow Diverting Stent for Brain Aneurysms
,”
Bioengineering
,
8
(
11
), p.
183
.10.3390/bioengineering8110183
21.
Woodruff
,
M. A.
, and
Hutmacher
,
D. W.
,
2010
, “
The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century
,”
Prog. Polymer Sci.
,
35
(
10
), pp.
1217
1256
.10.1016/j.progpolymsci.2010.04.002
22.
Malikmammadov
,
E.
,
Tanir
,
T. E.
,
Kiziltay
,
A.
,
Hasirci
,
V.
, and
Hasirci
,
N.
,
2018
, “
PCL and PCL-Based Materials in Biomedical Applications
,”
J. Biomater. Sci. Polym. Ed.
,
29
(
7–9
), pp.
863
893
.10.1080/09205063.2017.1394711
23.
Nga
,
V. D. W.
,
Lim
,
J.
,
Choy
,
D. K. S.
,
Nyein
,
M. A.
,
Lu
,
J.
,
Chou
,
N.
,
Yeo
,
T. T.
, et al.,
2015
, “
Effects of Polycaprolactone-Based Scaffolds on the Blood–Brain Barrier and Cerebral Inflammation
,”
Tissue Eng. Part A
21
(
3–4
), pp.
647
653
.10.1089/ten.tea.2013.0779
24.
Sun
,
H.
,
Mei
,
L.
,
Song
,
C.
,
Cui
,
X.
, and
Wang
,
P. J. B.
,
2006
, “
The In Vivo Degradation, Absorption and Excretion of PCL-Based Implant
,”
Biomaterials
27
(
9
), pp.
1735
1740
.10.1016/j.biomaterials.2005.09.019
25.
Ormiston
,
J. A.
, and
Serruys
,
P. W.
,
2009
, “
Bioabsorbable Coronary Stents
,”
Circ.: Cardiovasc. Interventions
,
2
(
3
), pp.
255
260
.10.1161/CIRCINTERVENTIONS.109.859173
26.
Ang
,
H. Y.
,
Bulluck
,
H.
,
Wong
,
P.
,
Venkatraman
,
S. S.
,
Huang
,
Y.
, and
Foin
,
N.
,
2017
, “
Bioresorbable Stents: Current and Upcoming Bioresorbable Technologies
,”
Int. J. Cardiol.
,
228
, pp.
931
939
.10.1016/j.ijcard.2016.11.258
27.
Bhogal
,
P.
,
Ganslandt
,
O.
,
Bäzner
,
H.
,
Henkes
,
H.
, and
Pérez
,
M. A.
,
2017
, “
The Fate of Side Branches Covered by Flow Diverters–Results From 140 Patients
,”
World Neurosurg.
,
103
, pp.
789
798
.10.1016/j.wneu.2017.04.092
28.
Rush
,
M. N.
,
Brambilla
,
S.
,
Speckart
,
S.
,
Montaño
,
G. A.
, and
Brown
,
M. J.
,
2018
, “
Glass-Particle Adhesion-Force-Distribution on Clean (Laboratory) and Contaminated (Outdoor) Surfaces
,”
J. Aerosol Sci.
123
, pp.
231
244
.10.1016/j.jaerosci.2018.06.002
29.
Nikolsky
,
E.
,
Gruberg
,
L.
,
Pechersky
,
S.
,
Kapeliovich
,
M.
,
Grenadier
,
E.
,
Amikam
,
S.
,
Boulos
,
M.
, et al.,
2003
, “
Stent Deployment Failure: Reasons, Implications, and Short‐and Long‐Term Outcomes
,”
Catheter. Cardiovasc. Interv.
,
59
(
3
), pp.
324
328
.10.1002/ccd.10543
30.
Dong
,
J.
,
Pacella
,
M.
,
Liu
,
Y.
, and
Zhao
,
L.
,
2022
, “
Surface Engineering and the Application of Laser-Based Processes to Stents-A Review of the Latest Development
,”
Bioactive Mater.
,
10
, pp.
159
184
.10.1016/j.bioactmat.2021.08.023
31.
Diller
,
R.
,
Senninger
,
N.
,
Kautz
,
G.
, and
Tübergen
,
D.
,
2003
, “
Stent Migration Necessitating Surgical Intervention
,”
Surg. Endoscopy
,
17
(
11
), pp.
1803
1807
.10.1007/s00464-002-9163-5
32.
Brown
,
D.
,
Naidu
,
J.
, and
Thomas
,
R. T.
,
2021
, “
Bowel Perforation: A ‘Not so Rare’ Complication of Biliary Stent Migration
,”
ANZ J. Surg.
,
91
(
12
), pp.
E784
E786
.10.1111/ans.16902
33.
Sheth
,
S.
,
Litvack
,
F.
,
Dev
,
V.
,
Fishbein
,
M. C.
,
Forrester
,
J. S.
, and
Eigler
,
N. J. C.
,
1996
, “
Subacute Thrombosis and Vascular Injury Resulting From Slotted-Tube Nitinol and Stainless Steel Stents in a Rabbit Carotid Artery Model
,”
Circulation
,
94
(
7
), pp.
1733
1740
.10.1161/01.cir.94.7.1733
34.
Love-Baker
,
C. A.
,
Harrell
,
T. M.
,
Brown
,
K. R.
,
Bumgardner
,
C. H.
, and
Li
,
X. C.
,
2021
, “
Analyzing the Effect of Misalignment on Single-Filament Carbon Fiber Tensile Testing Via Stereoscopic Computer Vision Imaging
,”
Meas. Sci. Technol.
,
32
(
6
), p.
065904
.10.1088/1361-6501/abeceb
35.
Li
,
X.
,
Wang
,
X.
,
Chang
,
W.-C.
,
Chao
,
Y. J.
, and
Chang
,
M. J.
,
2005
, “
Effect of Tensile Offset Angles on Micro/Nanoscale Tensile Testing
,”
Rev. Sci. Instrum.
,
76
(
3
), p.
033904
.10.1063/1.1865732
36.
Harrell
,
T. M.
,
Love-Baker
,
C.
,
Brown
,
K. R.
,
Bumgardner
,
C. H.
, and
Li
,
X.
,
2022
, “
Extracting Single Fiber Transverse and Shear Moduli From Off-Axis Misalignment Fiber Tensile Testing
,”
Composites, Part A
,
163
, p.
107204
.10.1016/j.compositesa.2022.107204
37.
Yokoo
,
T.
,
Shimizu
,
I.
,
Wada
,
A.
,
Takaki
,
A.
,
Okada
,
S.
,
Hatakeyama
,
M.
, and
Yamashita
,
S.
,
2014
, “
Development of Test Methods for Mechanical Property Evaluation of Balloon-Expandable CoCr Alloy Stent
,”
J. Jap. Soc. Exp. Mech.
14
(
Special_Issue
), pp.
s285
s290
.
38.
Heim
,
F. M.
,
Daspit
,
J. T.
, and
Li
,
X. J. C. P. B. E.
,
2020
, “
Quantifying the Effect of Tow Architecture Variability on the Performance of Biaxially Braided Composite Tubes
,”
Composites, Part B
201
, p.
108383
.10.1016/j.compositesb.2020.108383
39.
Heim
,
F. M.
,
Daspit
,
J. T.
,
Holzmond
,
O. B.
,
Croom
,
B. P.
, and
Li
,
X.
,
2020
, “
Analysis of Tow Architecture Variability in Biaxially Braided Composite Tubes
,”
Composites, Part B
190
, p.
107938
.10.1016/j.compositesb.2020.107938
40.
Bumgardner
,
C. H.
,
Heim
,
F. M.
,
Roache
,
D. C.
,
Jarama
,
A.
,
Xu
,
P.
,
Lu
,
R.
,
Lahoda
,
E. J.
, et al.,
2020
, “
Unveiling Hermetic Failure of Ceramic Tubes by Digital Image Correlation and Acoustic Emission
,”
J. Am. Ceram. Soc.
,
103
(
3
), pp.
2146
2159
.10.1111/jace.16854
41.
Ma
,
J.
,
You
,
Z.
,
Byrne
,
J.
, and
Rizkallah
,
R. R.
,
2014
, “
Design and Mechanical Properties of a Novel Cerebral Flow Diverter Stent
,”
Ann. Biomed. Eng.
,
42
(
5
), pp.
960
970
.10.1007/s10439-013-0967-3
42.
Matsumoto
,
T.
,
Matsubara
,
Y.
,
Aoyagi
,
Y.
,
Matsuda
,
D.
,
Okadome
,
J.
,
Morisaki
,
K.
,
Inoue
,
K.
, et al.,
2016
, “
Radial Force Measurement of Endovascular Stents: Influence of Stent Design and Diameter
,”
Sage J.
,
24
(
2
), pp.
171
176
.10.1177/1708538115590040
43.
Murray
,
P. E.
,
Lumley
,
P. J.
,
Ross
,
H. F.
, and
Smith
,
A. J.
,
2000
, “
Tooth Slice Organ Culture for Cytotoxicity Assessment of Dental Materials
,”
Biomaterials
,
21
(
16
), pp.
1711
1721
.10.1016/S0142-9612(00)00056-9
44.
Zaccarini
,
D. J.
,
Lubin
,
D.
,
Sanyal
,
S.
, and
Abraham
,
J. L.
,
2022
, “
Barium Sulfate Deposition in the Gastrointestinal Tract: Review of the Literature
,”
Diagn. Pathol.
,
17
(
1
), p.
99
.10.1186/s13000-022-01283-8
45.
Lämsä
,
T.
,
Jin
,
H.
,
Mikkonen
,
J.
,
Laukkarinen
,
J.
,
Sand
,
J.
, and
Nordback
,
I.
,
2006
, “
Biocompatibility of a New Bioabsorbable Radiopaque Stent Material (Ba SO4 Containing Poly-L,D-Lactide) in the Rat Pancreas
,”
Pancreatology
,
6
(
4
), pp.
301
305
.10.1159/000092772
46.
Bartoli
,
M.
,
Jagdale
,
P.
, and
Tagliaferro
,
A.
,
2020
, “
A Short Review on Biomedical Applications of Nanostructured Bismuth Oxide and Related Nanomaterials
,”
Materials
,
13
(
22
), p.
5234
.10.3390/ma13225234
47.
Sarani
,
M.
,
Tosan
,
F.
,
Hasani
,
S. A.
,
Barani
,
M.
,
Adeli-Sardou
,
M.
,
Khosravani
,
M.
,
Niknam
,
S.
, et al.,
2022
, “
Study of In Vitro Cytotoxic Performance of Biosynthesized α-Bi2O3 NPs, Mn-Doped and Zn-Doped Bi2O3 NPs Against MCF-7 and HUVEC Cell Lines
,”
J. Mater. Res. Technol.
,
19
, pp.
140
150
.10.1016/j.jmrt.2022.05.002
48.
Bortoluzzi
,
E. A.
,
Guerreiro-Tanomaru
,
J. M.
,
Tanomaru-Filho
,
M.
, and
Duarte
,
M. A. H.
,
2009
, “
Radiographic Effect of Different Radiopacifiers on a Potential Retrograde Filling Material
,”
Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodontol.
,
108
(
4
), pp.
628
632
.10.1016/j.tripleo.2009.04.044
49.
Chen
,
Y.-Z.
,
,
X.-Y.
, and
Liu
,
G.-D.
,
2018
, “
Effects of Different Radio-Opacifying Agents on Physicochemical and Biological Properties of a Novel Root-End Filling Material
,”
PLoS One
,
13
(
2
), pp.
e0191123
e0191123
.10.1371/journal.pone.0191123
You do not currently have access to this content.