Abstract

Strain energy and kinetic energy in the human brain were estimated by magnetic resonance elastography (MRE) during harmonic excitation of the head, and compared to characterize the effect of loading direction and frequency on brain deformation. In brain MRE, shear waves are induced by external vibration of the skull and imaged by a modified MR imaging sequence; the resulting harmonic displacement fields are typically “inverted” to estimate mechanical properties, like stiffness or damping. However, measurements of tissue motion from MRE also illuminate key features of the response of the brain to skull loading. In this study, harmonic excitation was applied in two different directions and at five different frequencies from 20 to 90 Hz. Lateral loading induced primarily left-right head motion and rotation in the axial plane; occipital loading induced anterior-posterior head motion and rotation in the sagittal plane. The ratio of strain energy to kinetic energy (SE/KE) depended strongly on both direction and frequency. The ratio of SE/KE was approximately four times larger for lateral excitation than for occipital excitation and was largest at the lowest excitation frequencies studied. These results are consistent with clinical observations that suggest lateral impacts are more likely to cause injury than occipital or frontal impacts, and also with observations that the brain has low-frequency (∼10 Hz) natural modes of oscillation. The SE/KE ratio from brain MRE is potentially a simple and powerful dimensionless metric of brain vulnerability to deformation and injury.

References

1.
Giudice
,
J. S.
,
Druzgal
,
T. J.
, and
Panzer
,
M. B.
,
2023
, “
Investigating the Effect of Brain Size on Deformation Magnitude Using Subject-Specific Finite Element Models
,”
J. Neurotrauma,
epub.
2.
Wu
,
T.
,
Rifkin
,
J. A.
,
Rayfield
,
A. C.
,
Anderson
,
E. D.
,
Panzer
,
M. B.
, and
Meaney
,
D. F.
,
2022
, “
Concussion Prone Scenarios: A Multi-Dimensional Exploration in Impact Directions, Brain Morphology, and Network Architectures Using Computational Models
,”
Ann. Biomed. Eng.
,
50
(
11
), pp.
1423
1436
.10.1007/s10439-022-03085-x
3.
Wu
,
S.
,
Zhao
,
W.
,
Wu
,
Z.
,
McAllister
,
T.
,
Hu
,
J.
, and
Ji
,
S.
,
2023
, “
Approximating Subject-Specific Brain Injury Models Via Scaling Based on Head-Brain Morphological Relationships
,”
Biomech. Model. Mechanobiol.
,
22
(
1
), pp.
159
175
.10.1007/s10237-022-01638-6
4.
Bian
,
K.
, and
Mao
,
H.
,
2020
, “
Mechanisms and Variances of Rotation-Induced Brain Injury: A Parametric Investigation Between Head Kinematics and Brain Strain
,”
Biomech. Model. Mechanobiol.
,
19
(
6
), pp.
2323
2341
.10.1007/s10237-020-01341-4
5.
Zhao
,
W.
, and
Ji
,
S.
,
2017
, “
Brain Strain Uncertainty Due to Shape Variation in and Simplification of Head Angular Velocity Profiles
,”
Biomech. Model. Mechanobiol.
,
16
(
2
), pp.
449
461
.10.1007/s10237-016-0829-7
6.
Ji
,
S.
,
Wu
,
S.
, and
Zhao
,
W.
,
2022
, “
Dynamic Characteristics of Impact-Induced Brain Strain in the Corpus Callosum
,”
Brain Multiphysics
,
3
, p.
100046
.10.1016/j.brain.2022.100046
7.
Weaver
,
A. A.
,
Danelson
,
K. A.
, and
Stitzel
,
J. D.
,
2012
, “
Modeling Brain Injury Response for Rotational Velocities of Varying Directions and Magnitudes
,”
Ann. Biomed. Eng.
,
40
(
9
), pp.
2005
2018
.10.1007/s10439-012-0553-0
8.
Takhounts
,
E. G.
,
Craig
,
M. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of Brain Injury Criteria (BrIC)
,”
Stapp Car Crash J.
,
57
, pp.
243
266
.10.4271/2013-22-0010
9.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2018
, “
Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics
,”
Ann. Biomed. Eng.
,
46
(
7
), pp.
972
985
.10.1007/s10439-018-2015-9
10.
Zhang
,
J.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Gennarelli
,
T. A.
,
2006
, “
Role of Translational and Rotational Accelerations on Brain Strain in Lateral Head Impact
,”
Biomed. Sci. Instrum.
,
42
, pp.
501
506
.https://pubmed.ncbi.nlm.nih.gov/16817658/
11.
Alshareef
,
A.
,
Giudice
,
J. S.
,
Forman
,
J.
,
Shedd
,
D. F.
,
Reynier
,
K. A.
,
Wu
,
T.
,
Sochor
,
S.
,
Sochor
,
M. R.
,
Salzar
,
R. S.
, and
Panzer
,
M. B.
,
2020
, “
Biomechanics of the Human Brain During Dynamic Rotation of the Head
,”
J. Neurotrauma
,
37
(
13
), pp.
1546
1555
.10.1089/neu.2019.6847
12.
Bayly
,
P. V.
,
Alshareef
,
A.
,
Knutsen
,
A. K.
,
Upadhyay
,
K.
,
Okamoto
,
R. J.
,
Carass
,
A.
,
Butman
,
J. A.
, et al.,
2021
, “
MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury
,”
Ann. Biomed. Eng.
,
49
(
10
), pp.
2677
2692
.10.1007/s10439-021-02820-0
13.
Sack
,
I.
,
Beierbach
,
B.
,
Hamhaber
,
U.
,
Klatt
,
D.
, and
Braun
,
J.
,
2008
, “
Non-Invasive Measurement of Brain Viscoelasticity Using Magnetic Resonance Elastography
,”
NMR Biomed.
,
21
(
3
), pp.
265
271
.10.1002/nbm.1189
14.
McGarry
,
M. D. J.
,
Van Houten
,
E. E. W.
,
Johnson
,
C. L.
,
Georgiadis
,
J. G.
,
Sutton
,
B. P.
,
Weaver
,
J. B.
, and
Paulsen
,
K. D.
,
2012
, “
Multiresolution MR Elastography Using Nonlinear Inversion
,”
Med. Phys.
,
39
(
10
), pp.
6388
6396
.10.1118/1.4754649
15.
Yin
,
Z.
,
Romano
,
A. J.
,
Manduca
,
A.
,
Ehman
,
R. L.
, and
Huston
,
J.
,
2018
, “
Stiffness and Beyond: What MR Elastography Can Tell us About Brain Structure and Function Under Physiologic and Pathologic Conditions
,”
Top. Magn. Reson. Imag.
,
27
(
5
), pp.
305
318
.10.1097/RMR.0000000000000178
16.
Clayton
,
E. H.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2012
, “
Transmission, Attenuation and Reflection of Shear Waves in the Human Brain
,”
J. R. Soc. Interface
,
9
(
76
), pp.
2899
2910
.10.1098/rsif.2012.0325
17.
Okamoto
,
R. J.
,
Romano
,
A. J.
,
Johnson
,
C. L.
, and
Bayly
,
P. V.
,
2019
, “
Insights Into Traumatic Brain Injury From MRI of Harmonic Brain Motion
,”
J. Exp. Neurosci.
,
13
, p.
117906951984044
.10.1177/1179069519840444
18.
Laksari
,
K.
,
Wu
,
L. C.
,
Kurt
,
M.
,
Kuo
,
C.
, and
Camarillo
,
D. C.
,
2015
, “
Resonance of Human Brain Under Head Acceleration
,”
J. R. Soc. Interface
,
12
(
108
), p.
20150331
.10.1098/rsif.2015.0331
19.
Escarcega
,
J. D.
,
Knutsen
,
A. K.
,
Okamoto
,
R. J.
,
Pham
,
D. L.
, and
Bayly
,
P. V.
,
2021
, “
Natural Oscillatory Modes of 3D Deformation of the Human Brain In Vivo
,”
J. Biomech.
,
119
, p.
110259
.10.1016/j.jbiomech.2021.110259
20.
Smith
,
D. R.
,
Caban-Rivera
,
D. A.
,
McGarry
,
M. D. J.
,
Williams
,
L. T.
,
McIlvain
,
G.
,
Okamoto
,
R. J.
,
Van Houten
,
E. E. W.
, et al.,
2022
, “
Anisotropic Mechanical Properties in the Healthy Human Brain Estimated With Multi-Excitation Transversely Isotropic MR Elastography
,”
Brain Multiphys.
,
3
, p.
100051
.10.1016/j.brain.2022.100051
21.
Badachhape
,
A. A.
,
Okamoto
,
R. J.
,
Durham
,
R. S.
,
Efron
,
B. D.
,
Nadell
,
S. J.
,
Johnson
,
C. L.
, and
Bayly
,
P. V.
,
2017
, “
The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051002
.10.1115/1.4036146
22.
Jenkinson
,
M.
,
2003
, “
Fast, Automated, N-Dimensional Phase-Unwrapping Algorithm
,”
Magn. Reson. Med.
,
49
(
1
), pp.
193
197
.10.1002/mrm.10354
23.
Jenkinson
,
M.
,
Beckmann
,
C. F.
,
Behrens
,
T. E. J.
,
Woolrich
,
M. W.
, and
Smith
,
S. M.
,
2012
, “
Fsl
,”
NeuroImage
,
62
(
2
), pp.
782
790
.10.1016/j.neuroimage.2011.09.015
24.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(
3
), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
25.
McGarry
,
M. D. J.
,
Van Houten
,
E. E. W.
,
Perriñez
,
P. R.
,
Pattison
,
A. J.
,
Weaver
,
J. B.
, and
Paulsen
,
K. D.
,
2011
, “
An Octahedral Shear Strain-Based Measure of SNR for 3D MR Elastography
,”
Phys. Med. Biol.
,
56
(
13
), pp.
N153
N164
.10.1088/0031-9155/56/13/N02
26.
Reinhold
,
J. C.
,
Dewey
,
B. E.
,
Carass
,
A.
, and
Prince
,
J. L.
,
2019
, “
Evaluating the Impact of Intensity Normalization on MR Image Synthesis
,”
Proc. SPIE Int. Soc. Opt. Eng.
,
10949
, p. 109493H.10.1117/12.2513089
27.
Fonov
,
V. S.
,
Evans
,
A. C.
,
McKinstry
,
R. C.
,
Almli
,
C. R.
, and
Collins
,
D. L.
,
2009
, “
Unbiased Nonlinear Average Age-Appropriate Brain Templates From Birth to Adulthood
,”
Neuroimage
,
47
(
47
), p.
S102
.10.1016/S1053-8119(09)70884-5
28.
Iglesias
,
J. E.
,
Liu
,
C.-Y.
,
Thompson
,
P. M.
, and
Tu
,
Z.
,
2011
, “
Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods
,”
IEEE Trans. Med. Imag.
,
30
(
9
), pp.
1617
1634
.10.1109/TMI.2011.2138152
29.
Huo
,
Y.
,
Xu
,
Z.
,
Xiong
,
Y.
,
Aboud
,
K.
,
Parvathaneni
,
P.
,
Bao
,
S.
,
Bermudez
,
C.
,
Resnick
,
S. M.
,
Cutting
,
L. E.
, and
Landman
,
B. A.
,
2019
, “
3D Whole Brain Segmentation Using Spatially Localized Atlas Network Tiles
,”
Neuroimage
,
194
, pp.
105
119
.10.1016/j.neuroimage.2019.03.041
30.
Glaister
,
J.
,
Carass
,
A.
,
Pham
,
D. L.
,
Butman
,
J. A.
, and
Prince
,
J. L.
,
2017
, “
Automatic Falx Cerebri and Tentorium Cerebelli Segmentation From Magnetic Resonance Images
,”
Proc. SPIE Int. Soc. Opt. Eng
,
10137
, p. 101371D.10.1117/12.2255640
31.
Auld
,
B. A.
,
1990
,
Acoustic Fields and Waves in Solids
,
Krieger Publishing Company
,
Malabar, FL
.
32.
Gelman
,
A.
, and
Hill
,
J.
,
2006
,
Data Analysis Using Regression and Multilevel/Hierarchical Models
,
Cambridge University Press
,
New York
.
33.
Knutsen
,
A. K.
,
Magrath
,
E.
,
McEntee
,
J. E.
,
Xing
,
F.
,
Prince
,
J. L.
,
Bayly
,
P. V.
,
Butman
,
J. A.
, and
Pham
,
D. L.
,
2014
, “
Improved Measurement of Brain Deformation During Mild Head Acceleration Using a Novel Tagged MRI Sequence
,”
J. Biomech.
,
47
(
14
), pp.
3475
3481
.10.1016/j.jbiomech.2014.09.010
34.
Sabet
,
A. A.
,
Christoforou
,
E.
,
Zatlin
,
B.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2008
, “
Deformation of the Human Brain Induced by Mild Angular Head Acceleration
,”
J. Biomech.
,
41
(
2
), pp.
307
315
.10.1016/j.jbiomech.2007.09.016
35.
Hardy
,
W. N.
,
Mason
,
M. J.
,
Foster
,
C. D.
,
Shah
,
C. S.
,
Kopacz
,
J. M.
,
Yang
,
K. H.
,
King
,
A. I.
,
Bishop
,
J.
,
Bey
,
M.
,
Anderst
,
W.
, and
Tashman
,
S.
,
2007
, “
A Study of the Response of the Human Cadaver Head to Impact
,”
Stapp Car Crash J.
,
51
, pp.
17
80
.10.4271/2007-22-0002
36.
Miller
,
L. E.
,
Urban
,
J. E.
, and
Stitzel
,
J. D.
,
2017
, “
Validation Performance Comparison for Finite Element Models of the Human Brain
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
12
), pp.
1273
1288
.10.1080/10255842.2017.1340462
37.
Ganpule
,
S.
,
Daphalapurkar
,
N. P.
,
Ramesh
,
K. T.
,
Knutsen
,
A. K.
,
Pham
,
D. L.
,
Bayly
,
P. V.
, and
Prince
,
J. L.
,
2017
, “
A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics
,”
J. Neurotrauma
,
34
(
13
), pp.
2154
2166
.10.1089/neu.2016.4744
38.
Zhou
,
Z.
,
Li
,
X.
,
Kleiven
,
S.
,
Shah
,
C. S.
, and
Hardy
,
W. N.
,
2018
, “
A Reanalysis of Experimental Brain Strain Data: Implication for Finite Element Head Model Validation
,”
Stapp Car Crash J.
,
62
, pp.
293
318
.10.4271/2018-22-0007
39.
Zhao
,
W.
, and
Ji
,
S.
,
2020
, “
Displacement- and Strain-Based Discrimination of Head Injury Models Across a Wide Range of Blunt Conditions
,”
Ann. Biomed. Eng.
,
48
(
6
), pp.
1661
1677
.10.1007/s10439-020-02496-y
40.
Giudice
,
J. S.
,
Alshareef
,
A.
,
Wu
,
T.
,
Knutsen
,
A. K.
,
Hiscox
,
L. V.
,
Johnson
,
C. L.
, and
Panzer
,
M. B.
,
2021
, “
Calibration of a Heterogeneous Brain Model Using a Subject-Specific Inverse Finite Element Approach
,”
Front. Bioeng. Biotechnol.
,
9
, p.
664268
.10.3389/fbioe.2021.664268
41.
Menghani
,
R. R.
,
Das
,
A.
, and
Kraft
,
R. H.
,
2023
, “
A Sensor-Enabled Cloud-Based Computing Platform for Computational Brain Biomechanics
,”
Comput. Methods Programs Biomed.
,
233
, p.
107470
.10.1016/j.cmpb.2023.107470
42.
Escarcega
,
J.
,
Knutsen
,
A. K.
,
Alshareef
,
A. A.
,
Johnson
,
C. L.
,
Okamoto
,
R. J.
,
Pham
,
D. L.
, and
Bayly
,
P. V.
,
2023
, “
Comparison of Oscillatory Deformation Patterns Excited in the Human Brain In Vivo by Harmonic and Impulsive Skull Motion
,”
ASME J. Biomech. Eng.
,
145
(
8
), p.
081006
.10.1115/1.4062809
43.
Gale
,
S. D.
,
Baxter
,
L.
,
Roundy
,
N.
, and
Johnson
,
S. C.
,
2005
, “
Traumatic Brain Injury and Grey Matter Concentration: A Preliminary Voxel Based Morphometry Study
,”
J. Neurol. Neurosurg. Psychiatry
,
76
(
7
), pp.
984
988
.10.1136/jnnp.2004.036210
44.
Hiscox
,
L. V.
,
McGarry
,
M. D. J.
,
Schwarb
,
H.
,
Van Houten
,
E. E. W.
,
Pohlig
,
R. T.
,
Roberts
,
N.
,
Huesmann
,
G. R.
, et al.,
2020
, “
Standard-Space Atlas of the Viscoelastic Properties of the Human Brain
,”
Hum. Brain Mapp.
,
41
(
18
), pp.
5282
5300
.10.1002/hbm.25192
You do not currently have access to this content.