Abstract

Screw loosening remains a prominent problem for osteoporotic patients undergoing pedicle screw fixation surgeries and is affected by screw parameters (e.g., diameter, pitch, and thread angle). However, the individual and interactive effects of these parameters on screw fixation are not fully understood. Furthermore, the current finite element modeling of a threaded screw is less computationally efficient. To address these issues, we (1) explored a novel “simulated threaded screw” approach (virtual threads assigned to the contact elements of a simplified screw) and compared its performance with threaded and simplified screws, and (2) examined this approach the individual and interactive effects of altering screw diameter (5.5–6.5 mm), pitch (1–2 mm) and half-thread angle (20–30 deg) on pullout strength of normal vertebrae. Results demonstrated that the “simulated threaded screw” approach equivalently predicted pullout strength compared to the “threaded screw” approach (R2 = 0.99, slope = 1). We further found that the pullout strength was most sensitive to the change in screw diameter, followed by thread angle, pitch, and interactions of diameter*pitch or diameter*angle. In conclusion, the “simulated threaded screw” approach can achieve the same predictive capability compared to threaded modeling of the screw. The current findings may serve as useful references for planning of screw parameters, so as to improve the complication of screw loosening.

References

1.
Zhang
,
T.
,
Ren
,
X.
,
Feng
,
X.
,
Diwan
,
A.
,
Luk
,
K. D. K.
,
Lu
,
W. W.
,
Wong
,
T.
,
Li
,
C.
, and
Cheung
,
J. P. Y.
,
2020
, “
Failure Mechanisms of Pedicle Screws and Cortical Screws Fixation Under Large Displacement: A Biomechanical and Microstructural Study Based on a Clinical Case Scenario
,”
J. Mech. Behav. Biomed.
,
104
, p.
103646
.10.1016/j.jmbbm.2020.103646
2.
Baluch
,
D. A.
,
Patel
,
A. A.
,
Lullo
,
B.
,
Havey
,
R. M.
,
Voronov
,
L. I.
,
Nguyen
,
N.
,
Carandang
,
G.
,
Ghanayem
,
A. J.
, and
Patwardhan
,
A. G.
,
2014
, “
Effect of Physiological Loads on Cortical and Traditional Pedicle Screw Fixation
,”
Spine
,
22
(
39
), pp.
E1297
E1302
.10.1097/BRS.0000000000000553
3.
Galbusera
,
F.
,
Volkheimer
,
D.
,
Reitmaier
,
S.
,
Berger-Roscher
,
N.
,
Kienle
,
A.
, and
Wilke
,
H. J.
,
2015
, “
Pedicle Screw Loosening: A Clinically Relevant Complication?
,”
Eur. Spine J.
,
24
(
5
), pp.
1005
1016
.10.1007/s00586-015-3768-6
4.
El Saman
,
A.
,
Meier
,
S.
,
Sander
,
A.
,
Kelm
,
A.
,
Marzi
,
I.
, and
Laurer
,
H.
,
2013
, “
Reduced Loosening Rate and Loss of Correction Following Posterior Stabilization With or Without PMMA Augmentation of Pedicle Screws in Vertebral Fractures in the Elderly
,”
Eur. J. Trauma Emerg. Surg.
,
39
(
5
), pp.
455
460
.10.1007/s00068-013-0310-6
5.
Cho
,
W.
,
Cho
,
S. K.
, and
Wu
,
C.
,
2010
, “
The Biomechanics of Pedicle Screw-Based Instrumentation
,”
J. Bone Jt. Surg. Br.
,
92-B
(
8
), pp.
1061
1065
.10.1302/0301-620X.92B8.24237
6.
Hsieh
,
M.
,
Liu
,
M.
,
Chen
,
J.
,
Tsai
,
T.
,
Lai
,
P.
,
Niu
,
C.
, and
Tai
,
C.
,
2020
, “
Use of Longer Sized Screws is a Salvage Method for Broken Pedicles in Osteoporotic Vertebrae
,”
Sci. Rep.-UK
,
1
(
10
), p.
10441
.10.1038/s41598-020-67489-2
7.
Matsukawa
,
K.
,
Yato
,
Y.
, and
Imabayashi
,
H.
,
2021
, “
Impact of Screw Diameter and Length on Pedicle Screw Fixation Strength in Osteoporotic Vertebrae: A Finite Element Analysis
,”
Asian Spine J.
,
15
(
5
), pp.
566
574
.10.31616/asj.2020.0353
8.
Chatzistergos
,
P. E.
,
Magnissalis
,
E. A.
, and
Kourkoulis
,
S. K.
,
2010
, “
A Parametric Study of Cylindrical Pedicle Screw Design Implications on the Pullout Performance Using an Experimentally Validated Finite-Element Model
,”
Med. Eng. Phys.
,
32
(
2
), pp.
145
154
.10.1016/j.medengphy.2009.11.003
9.
Zhang
,
Q. H.
,
Tan
,
S. H.
, and
Chou
,
S. M.
,
2004
, “
Investigation of Fixation Screw Pull-Out Strength on Human Spine
,”
J. Biomech.
,
37
(
4
), pp.
479
485
.10.1016/j.jbiomech.2003.09.005
10.
Liu
,
M.
,
Tsai
,
T.
,
Lai
,
P.
,
Hsieh
,
M.
,
Chen
,
L.
, and
Tai
,
C.
,
2020
, “
Biomechanical Comparison of Pedicle Screw Fixation Strength in Synthetic Bones: Effects of Screw Shape, Core/Thread Profile and Cement Augmentation
,”
PLoS One
,
15
(
2
), p.
e229328
.10.1371/journal.pone.0229328
11.
Alkaly
,
R. N.
, and
Bader
,
D. L.
,
2016
, “
The Effect of Transpedicular Screw Design on Its Performance in Vertebral Bone Under Tensile Loads
,”
Clin. Spine Surg.
,
29
(
10
), pp.
433
440
.10.1097/BSD.0b013e3182a03c70
12.
Gausepohl
,
T.
,
Mohring
,
R.
,
Pennig
,
D.
, and
Koebke
,
J.
,
2001
, “
Fine Thread Versus Coarse Thread. A Comparison of the Maximum Holding Power
,”
Injury
,
32
(
Suppl 4
), pp.
1
D7
.10.1016/S0020-1383(01)00168-1
13.
Bianco
,
R.
,
Arnoux
,
P.
,
Wagnac
,
E.
,
Mac-Thiong
,
J.
, and
Aubin
,
C.
,
2017
, “
Minimizing Pedicle Screw Pullout Risks: A Detailed Biomechanical Analysis of Screw Design and Placement
,”
Clin. Spine Surg.
,
30
(
3
), pp.
E226
E232
.10.1097/BSD.0000000000000151
14.
Matsukawa
,
K.
,
Yato
,
Y.
,
Imabayashi
,
H.
,
Hosogane
,
N.
,
Abe
,
Y.
,
Asazuma
,
T.
, and
Chiba
,
K.
,
2016
, “
Biomechanical Evaluation of Fixation Strength Among Different Sizes of Pedicle Screws Using the Cortical Bone Trajectory: What is the Ideal Screw Size for Optimal Fixation?
,”
Acta Neurochir.
,
158
(
3
), pp.
465
471
.10.1007/s00701-016-2705-8
15.
Molinari
,
L.
,
Falcinelli
,
C.
,
Gizzi
,
A.
, and
Di Martino
,
A.
,
2021
, “
Effect of Pedicle Screw Angles on the Fracture Risk of the Human Vertebra: A Patient-Specific Computational Model
,”
J. Mech. Behav. Biomed.
,
116
, p.
104359
.10.1016/j.jmbbm.2021.104359
16.
Guo
,
L.
, and
Wang
,
Q.
,
2020
, “
Biomechanical Analysis of a New Bilateral Pedicle Screw Fixator System Based on Topological Optimization
,”
Int. J. Precis. Eng. Man.
,
21
(
7
), pp.
1363
1374
.10.1007/s12541-020-00336-6
17.
Liu
,
C. W.
,
Wang
,
L. L.
,
Xu
,
Y. K.
,
Chen
,
C. M.
,
Wang
,
J. C.
,
Tsai
,
W. T.
, and
Lin
,
S. C.
,
2020
, “
Traditional and Cortical Trajectory Screws of Static and Dynamic Lumbar Fixation- A Finite Element Study
,”
BMC Musculoskelet. Disord.
,
1
(
21
), p.
463
.10.1186/s12891-020-03437-5
18.
Wang
,
T. N.
,
Wu
,
B. L.
,
Duan
,
R. M.
,
Yuan
,
Y. S.
,
Qu
,
M. J.
,
Zhang
,
S.
,
Huang
,
W.
,
Liu
,
T.
, and
Yu
,
X. B.
,
2020
, “
Treatment of Thoracolumbar Fractures Through Different Short Segment Pedicle Screw Fixation Techniques: A Finite Element Analysis
,”
Orthop. Surg.
,
12
(
2
), pp.
601
608
.10.1111/os.12643
19.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Models Predict In Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
.10.1016/S8756-3282(03)00210-2
20.
Wei
,
Y.
,
Feng
,
W.
,
Li
,
G.
,
Li
,
Z.
,
Liu
,
Z.
,
Cheng
,
X.
, and
Yang
,
H.
,
2021
, “
Experimental Testing and Biomechanical CT Analysis of Chinese Cadaveric Vertebrae With Different Modeling Approaches
,”
Med. Eng. Phys.
,
93
, pp.
8
16
.10.1016/j.medengphy.2021.05.008
21.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
22.
Prado
,
M.
,
Rezaei
,
A.
, and
Giambini
,
H.
,
2021
, “
Density-Dependent Material and Failure Criteria Equations Highly Affect the Accuracy and Precision of QCT/FEA-Based Predictions of Osteoporotic Vertebral Fracture Properties
,”
Ann. Biomed. Eng.
,
49
(
2
), pp.
663
672
.10.1007/s10439-020-02595-w
23.
Sensale
,
M.
,
Vendeuvre
,
T.
,
Schilling
,
C.
,
Grupp
,
T.
,
Rochette
,
M.
, and
Dall Ara
,
E.
,
2021
, “
Patient-Specific Finite Element Models of Posterior Pedicle Screw Fixation: Effect of Screw's Size and Geometry
,”
Front. Bioeng. Biotechnol.
,
9
, p.
643154
.10.3389/fbioe.2021.643154
24.
Kopperdahl
,
D. L.
,
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2002
, “
Quantitative Computed Tomography Estimates of the Mechanical Properties of Human Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
20
(
4
), pp.
801
805
.10.1016/S0736-0266(01)00185-1
25.
Zhang
,
W.
,
Zhao
,
J.
,
Jiang
,
X.
,
Li
,
L.
,
Yu
,
C.
,
Zhao
,
Y.
, and
Si
,
H.
,
2020
, “
Thoracic Vertebra Fixation With a Novel Screw-Plate System Based on Computed Tomography Imaging and Finite Element Method
,”
Comput. Meth. Prog. Biomed.
,
187
, p.
104990
.10.1016/j.cmpb.2019.104990
26.
Chevalier
,
Y.
,
Matsuura
,
M.
,
Krüger
,
S.
,
Fleege
,
C.
,
Rickert
,
M.
,
Rauschmann
,
M.
, and
Schilling
,
C.
,
2018
, “
Micro-CT and Micro-FE Analysis of Pedicle Screw Fixation Under Different Loading Conditions
,”
J. Biomech.
,
70
, pp.
204
211
.10.1016/j.jbiomech.2017.12.023
27.
Bianco
,
R.
,
Arnoux
,
P.
,
Mac-Thiong
,
J.
, and
Aubin
,
C.
,
2019
, “
Thoracic Pedicle Screw Fixation Under Axial and Perpendicular Loadings: A Comprehensive Numerical Analysis
,”
Clin. Biomech.
,
68
, pp.
190
196
.10.1016/j.clinbiomech.2019.06.010
28.
ASTM
,
2007
, “Standard Specification and Test Methods for Metallic Medical Bone Screws,” American Society for Testing and Materials, West Conshohocken, PA, Standard No. F543-07.
29.
Van den Abbeele
,
M.
,
Valiadis
,
J. M.
,
Lima
,
L.
,
Khalife
,
P.
,
Rouch
,
P.
, and
Skalli
,
W.
,
2018
, “
Contribution to FE Modeling for Intraoperative Pedicle Screw Strength Prediction
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
1
), pp.
13
21
.10.1080/10255842.2017.1414200
30.
Zhang
,
W.
,
Zhao
,
J.
,
Li
,
L.
,
Yu
,
C.
,
Zhao
,
Y.
, and
Si
,
H.
,
2020
, “
Modelling Tri-Cortical Pedicle Screw Fixation in Thoracic Vertebrae Under Osteoporotic Condition: A Finite Element Analysis Based on Computed Tomography
,”
Comput. Meth. Prog. Biomed.
,
187
, p.
105035
.10.1016/j.cmpb.2019.105035
31.
Varghese
,
V.
,
Saravana Kumar
,
G.
, and
Krishnan
,
V.
,
2017
, “
Effect of Various Factors on Pull Out Strength of Pedicle Screw in Normal and Osteoporotic Cancellous Bone Models
,”
Med. Eng. Phys.
,
40
, pp.
28
38
.10.1016/j.medengphy.2016.11.012
32.
Calvert
,
G. C.
,
Lawrence
,
B. D.
,
Abtahi
,
A. M.
,
Bachus
,
K. N.
, and
Brodke
,
D. S.
,
2015
, “
Cortical Screws Used to Rescue Failed Lumbar Pedicle Screw Construct: A Biomechanical Analysis
,”
J. Neurosurg. Spine
,
22
(
2
), pp.
166
172
.10.3171/2014.10.SPINE14371
33.
Shea
,
T. M.
,
Laun
,
J.
,
Gonzalez-Blohm
,
S. A.
,
Doulgeris
,
J. J.
,
Lee
,
W. E.
,
Aghayev
,
K.
, and
Vrionis
,
F. D.
,
2014
, “
Designs and Techniques That Improve the Pullout Strength of Pedicle Screws in Osteoporotic Vertebrae: Current Status
,”
Biomed. Res. Int.
,
2014
, pp.
1
15
.10.1155/2014/748393
34.
Guvenc
,
Y.
,
Akyoldas
,
G.
,
Senturk
,
S.
,
Erbulut
,
D.
,
Yaman
,
O.
, and
Ozer
,
A. F.
,
2017
, “
How to Reduce Stress on the Pedicle Screws in Thoracic Spine? Importance of Screw Trajectory: A Finite Element Analysis
,”
Turk. Neurosurg.
,
29
(
1
), pp.
20
25
.10.5137/1019-5149.JTN.21895-17.2
You do not currently have access to this content.