Abstract

This study aimed to perform quantitative biomechanical analysis for probing the effect of varying thread shapes in an implant for improved primary stability in prosthodontics surgery. Dental implants were designed with square (SQR), buttress (BUT), and triangular (TRI) thread shapes or their combinations. Cone-beam computed tomography images of mandible molar zones in human subjects belonging to three age groups were used for virtual implantation of the designed implants, to quantify patient-specific peri-implant bone microstrain, using finite element analyses. The in silico analyses were carried out considering frictional contact to simulate immediate loading with a static masticatory force of 200 N. To validate computational biomechanics results, compression tests were performed on three-dimensional printed implants having the investigated thread architectures. Bone/implant contact areas were also quantitatively assessed. It was observed that, bone/implant contact was maximum for SQR implants followed by BUT and TRI implants. For all the cases, peak microstrain was recorded in the cervical cortical bone. The combination of different thread shapes in the middle or in the apical part (or both) was demonstrated to improve peri-implant microstrain, particularly for BUT and TRI. Considering 1500–2000 microstrain generates in the peri-implant bone during regular physiological functioning, BUT-SQR, BUT-TRI-SQR, TRI-SQR-BUT, SQR, and SQR-BUT-TRI design concepts were suitable for younger; BUT-TRI-SQR, BUT-SQR-TRI, TRI-SQR-BUT, SQR-BUT, SQR-TRI for middle-aged, and BUT-TRI-SQR, BUT-SQR-TRI, TRI-BUT-SQR, SQR, and SQR-TRI for the older group of human patients.

References

1.
Guillaume
,
B.
,
2016
, “
Les Implants Dentaires: Revue
,”
Morphologie
,
100
(
331
), pp.
189
198
.10.1016/j.morpho.2016.02.002
2.
Gibbard
,
L. L.
, and
Zarb
,
G.
,
2002
, “
A 5-Year Prospective Study of Implant-Supported Single-Tooth Replacements
,”
J. Can. Dent. Assoc.
,
68
(
2
), pp.
110
116
.
3.
Lemos
,
C. A. A.
,
Verri
,
F. R.
,
de Oliveira Neto
,
O. B.
,
Cruz
,
R. S.
,
Luna Gomes
,
J. M.
,
da Silva Casado
,
B. G.
, and
Pellizzer
,
E. P.
,
2020
, “
Clinical Effect of the High Insertion Torque on Dental Implants: A Systematic Review and Meta-Analysis
,”
J. Prosthet. Dent.
,
126
(
4
), pp.
1
7
.
4.
Londoño
,
J. J.
,
Ramos
,
A. M.
,
Correa
,
S. A.
, and
Mesnard
,
M.
,
2021
, “
A Review of Expandable Dental Implants
,”
Br. J. Oral Maxillofac. Surg.
,
59
(
5
), pp.
546
554
.10.1016/j.bjoms.2020.11.018
5.
Misch
,
C. E.
,
2015
,
Dental Implant Prosthetics
,
Elsevier Mosby
,
St. Louis, MI
.
6.
De Bruyn
,
H.
,
Raes
,
S.
,
Östman
,
P. O.
, and
Cosyn
,
J.
,
2014
, “
Immediate Loading in Partially and Completely Edentulous Jaws: A Review of the Literature With Clinical Guidelines
,”
Periodontology
,
66
(
1
), pp.
153
187
.10.1111/prd.12040
7.
Mangano
,
F. G.
,
Caprioglio
,
A.
,
Levrini
,
L.
,
Farronato
,
D.
,
Zecca
,
P. A.
, and
Mangano
,
C.
,
2015
, “
Immediate Loading of Mandibular Overdentures Supported by One-Piece, Direct Metal Laser Sintering Mini-Implants: A Short-Term Prospective Clinical Study
,”
J. Periodontol.
,
86
(
2
), pp.
192
200
.10.1902/jop.2014.140343
8.
Tettamanti
,
L.
,
Andrisani
,
C.
,
Bassi
,
M. A.
,
Vinci
,
R.
, and
Tagliabue
,
A.
,
2017
, “
Immediate Loading Implants: Review of the Critical Aspects
,”
ORAL Implantol.
,
10
(
2
), pp.
129
139
.10.11138/orl/2017.10.2.129
9.
Pigozzo
,
M. N.
,
Rebelo da Costa
,
T.
,
Sesma
,
N.
, and
Laganá
,
D. C.
,
2018
, “
Immediate Versus Early Loading of Single Dental Implants: A Systematic Review and Meta-Analysis
,”
J. Prosthet. Dent.
,
120
(
1
), pp.
25
34
.10.1016/j.prosdent.2017.12.006
10.
Chen
,
J.
,
Cai
,
M.
,
Yang
,
J.
,
Aldhohrah
,
T.
, and
Wang
,
Y.
,
2019
, “
Immediate Versus Early or Conventional Loading Dental Implants With Fixed Prostheses: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials
,”
J. Prosthet. Dent.
,
122
(
6
), pp.
516
536
.10.1016/j.prosdent.2019.05.013
11.
Rocci
,
A.
,
Rocci
,
M.
,
Rocci
,
C.
,
Scoccia
,
A.
,
Gargari
,
M.
,
Martignoni
,
M.
,
Gottlow
,
J.
, and
Sennerby
,
L.
,
2013
, “
Immediate Loading of Brånemark System TiUnite and Machined-Surface Implants in the Posterior Mandible, Part II: A Randomized Open-Ended 9-Year Follow-Up Clinical Trial
,”
Int. J. Oral Maxillofac. Implants
,
28
(
3
), pp.
891
895
.10.11607/jomi.2397
12.
Gaviria
,
L.
,
Salcido
,
J. P.
,
Guda
,
T.
, and
Ong
,
J. L.
,
2014
, “
Current Trends in Dental Implants
,”
J. Korean Assoc. Oral Maxillofac. Surg.
,
40
(
2
), p.
50
.10.5125/jkaoms.2014.40.2.50
13.
Romanos
,
G. E.
,
2004
, “
Surgical and Prosthetic Concepts for Predictable Immediate Loading of Oral Implants
,”
J. Calif. Dent. Assoc.
,
32
(
12
), pp.
991
1001
.https://pubmed.ncbi.nlm.nih.gov/15715376/
14.
Natali
,
A. N.
,
Carniel
,
E. L.
, and
Pavan
,
P. G.
,
2009
, “
Investigation of Viscoelastoplastic Response of Bone Tissue in Oral Implants Press Fit Process
,”
J. Biomed. Mater. Res., Part B
,
91B
(
2
), pp.
868
875
.10.1002/jbm.b.31469
15.
Javed
,
F.
, and
Romanos
,
G. E.
,
2010
, “
The Role of Primary Stability for Successful Immediate Loading of Dental Implants. A Literature Review
,”
J. Dent.
,
38
(
8
), pp.
612
620
.10.1016/j.jdent.2010.05.013
16.
Çehreli
,
M.
,
Şahin
,
S.
, and
Akça
,
K.
,
2004
, “
Role of Mechanical Environment and Implant Design on Bone Tissue Differentiation: Current Knowledge and Future Contexts
,”
J. Dent.
,
32
(
2
), pp.
123
132
.10.1016/j.jdent.2003.09.003
17.
van Staden
,
R. C.
,
Guan
,
H.
, and
Loo
,
Y. C.
,
2006
, “
Application of the Finite Element Method in Dental Implant Research
,”
Comput. Methods Biomech. Biomed. Eng.
,
9
(
4
), pp.
257
270
.10.1080/10255840600837074
18.
Hansson
,
S.
, and
Werke
,
M.
,
2003
, “
The Implant Thread as a Retention Element in Cortical Bone: The Effect of Thread Size and Thread Profile: A Finite Element Study
,”
J. Biomech.
,
36
(
9
), pp.
1247
1258
.10.1016/S0021-9290(03)00164-7
19.
Vidyasagar
,
L.
, and
Apse
,
P.
,
2004
, “
Dental Implant Design and Biological Effects on Bone–Implant Interface
,”
Stomatol. Balt. Dent. Maxillofac. J.
,
6
(
2
), pp.
51
54
.https://sbdmj.lsmuni.lt/042/042-04.pdf
20.
Kong
,
L.
,
Zhao
,
Y.
,
Hu
,
K.
,
Li
,
D.
,
Zhou
,
H.
,
Wu
,
Z.
, and
Liu
,
B.
,
2009
, “
Selection of the Implant Thread Pitch for Optimal Biomechanical Properties: A Three-Dimensional Finite Element Analysis
,”
Adv. Eng. Software
,
40
(
7
), pp.
474
478
.10.1016/j.advengsoft.2008.08.003
21.
Faegh
,
S.
, and
Müftü
,
S.
,
2010
, “
Load Transfer Along the Bone-Dental Implant Interface
,”
J. Biomech.
,
43
(
9
), pp.
1761
1770
.10.1016/j.jbiomech.2010.02.017
22.
Ao
,
J.
,
Li
,
T.
,
Liu
,
Y.
,
Ding
,
Y.
,
Wu
,
G.
,
Hu
,
K.
, and
Kong
,
L.
,
2010
, “
Optimal Design of Thread Height and Width on an Immediately Loaded Cylinder Implant: A Finite Element Analysis
,”
Comput. Biol. Med.
,
40
(
8
), pp.
681
686
.10.1016/j.compbiomed.2009.10.007
23.
Eraslan
,
O.
, and
Inan
,
Ö.
,
2010
, “
The Effect of Thread Design on Stress Distribution in a Solid Screw Implant: A 3D Finite Element Analysis
,”
Clin. Oral Investig.
,
14
(
4
), pp.
411
416
.10.1007/s00784-009-0305-1
24.
Pirmoradian
,
M.
,
Naeeni
,
H. A.
,
Firouzbakht
,
M.
,
Toghraie
,
D.
,
khabaz
,
M. K.
, and
Darabi
,
R.
,
2020
, “
Finite Element Analysis and Experimental Evaluation on Stress Distribution and Sensitivity of Dental Implants to Assess Optimum Length and Thread Pitch
,”
Comput. Methods Programs Biomed.
,
187
, p.
105258
.10.1016/j.cmpb.2019.105258
25.
Bolind
,
P. K.
,
Johansson
,
C. B.
,
Becker
,
W.
,
Langer
,
L.
,
Sevetz
,
E. B.
, and
Albrektsson
,
T. O.
,
2005
, “
A Descriptive Study on Retrieved Non-Threaded and Threaded Implant Designs
,”
Clin. Oral Implants Res.
,
16
(
4
), pp.
447
455
.10.1111/j.1600-0501.2005.01129.x
26.
Huang
,
H. L.
,
Hsu
,
J. T.
,
Fuh
,
L. J.
,
Tu
,
M. G.
,
Ko
,
C. C.
, and
Shen
,
Y. W.
,
2008
, “
Bone Stress and Interfacial Sliding Analysis of Implant Designs on an Immediately Loaded Maxillary Implant: A Non-Linear Finite Element Study
,”
J. Dent.
,
36
(
6
), pp.
409
417
.10.1016/j.jdent.2008.02.015
27.
Abuhussein
,
H.
,
Pagni
,
G.
,
Rebaudi
,
A.
, and
Wang
,
H. L.
,
2010
, “
The Effect of Thread Pattern Upon Implant Osseointegration: Review
,”
Clin. Oral Implants Res.
,
21
(
2
), pp.
129
136
.10.1111/j.1600-0501.2009.01800.x
28.
Lee
,
C. C.
,
Lin
,
S. C.
,
Kang
,
M. J.
,
Wu
,
S. W.
, and
Fu
,
P. Y.
,
2010
, “
Effects of Implant Threads on the Contact Area and Stress Distribution of Marginal Bone
,”
J. Dent. Sci.
,
5
(
3
), pp.
156
165
.10.1016/S1991-7902(10)60023-2
29.
Chang
,
P.-K.
,
Chen
,
Y.-C.
,
Huang
,
C.-C.
,
Lu
,
W.-H.
,
Chen
,
Y.-C.
, and
Tsai
,
H.-H.
,
2012
, “
Distribution of Micromotion in Implants and Alveolar Bone With Different Thread Profiles in Immediate Loading: A Finite Element Study
,”
Int. J. Oral Maxillofac. Implants
,
27
(
6
), pp.
e96
e101
.https://pubmed.ncbi.nlm.nih.gov/23189316/
30.
Mosavar
,
A.
,
Ziaei
,
A.
, and
Kadkhodaei
,
M.
,
2015
, “
The Effect of Implant Thread Design on Stress Distribution in Anisotropic Bone With Different Osseointegration Conditions: A Finite Element Analysis
,”
Int. J. Oral Maxillofac. Implants
,
30
(
6
), pp.
1317
1326
.10.11607/jomi.4091
31.
van Lenthe
,
G. H.
, and
Müller
,
R.
,
2008
, “
CT-Based Visualization and Quantification of Bone Microstructure In Vivo
,”
IBMS Bonekey
,
5
(
11
), pp.
410
425
.10.1138/20080348
32.
Adams
,
J. E.
,
2013
, “
Advances in Bone Imaging for Osteoporosis
,”
Nat. Rev. Endocrinol.
,
9
(
1
), pp.
28
42
.10.1038/nrendo.2012.217
33.
Fuh
,
L. J.
,
Huang
,
H. L.
,
Chen
,
C. S.
,
Fu
,
K. L.
,
Shen
,
Y. W.
,
Tu
,
M. G.
,
Shen
,
W. C.
, and
Hsu
,
J. T.
,
2010
, “
Variations in Bone Density at Dental Implant Sites in Different Regions of the Jawbone
,”
J. Oral Rehabil.
,
37
(
5
), pp.
346
351
.10.1111/j.1365-2842.2010.02061.x
34.
Roy
,
S.
,
Das
,
M.
,
Chakraborty
,
P.
,
Kumar Biswas
,
J.
,
Chatterjee
,
S.
,
Khutia
,
N.
,
Saha
,
S.
, and
Roy Chowdhury
,
A.
,
2017
, “
Optimal Selection of Dental Implant for Different Bone Conditions Based on the Mechanical Response
,”
Acta Bioeng. Biomech.
,
19
(
2
), pp.
11
20
.https://pubmed.ncbi.nlm.nih.gov/28869633/
35.
Chatterjee
,
S.
,
Kobylinski
,
S.
, and
Basu
,
B.
,
2018
, “
Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone
,”
ASME J. Biomech. Eng.
,
140
(
10
), p.
101014
.10.1115/1.4040249
36.
Chakraborty
,
A.
,
Datta
,
P.
,
Majumder
,
S.
,
Mondal
,
S. C.
, and
Roychowdhury
,
A.
,
2020
, “
Finite Element and Experimental Analysis to Select Patient's Bone Condition Specific Porous Dental Implant, Fabricated Using Additive Manufacturing
,”
Comput. Biol. Med.
,
124
, p.
103839
.10.1016/j.compbiomed.2020.103839
37.
Chatterjee
,
S.
,
Roy
,
S.
,
Majumder
,
S.
, and
Roychowdhury
,
A.
,
2020
, “
Biomechanical Analysis to Probe Role of Bone Condition and Subject Weight in Stiffness Customization of Femoral Stem for Improved Periprosthetic Biomechanical Response
,”
ASME J. Biomech. Eng.
,
142
(
10
), p.
101002
.10.1115/1.4046973
38.
Hsu
,
M.
, and
Chang
,
C.
,
2010
, “
Application of Finite Element Analysis in Dentistry
,”
Finite Element Analysis
,
D.
Morartal
, ed.,
IntechOpen
, Rijeka, Croatia, pp.
43
60
.
39.
Chang
,
Y.
,
Tambe
,
A. A.
,
Maeda
,
Y.
,
Wada
,
M.
, and
Gonda
,
T.
,
2018
, “
Finite Element Analysis of Dental Implants With Validation: To What Extent Can We Expect the Model to Predict Biological Phenomena? A Literature Review and Proposal for Classification of a Validation Process
,”
Int. J. Implant Dent.
,
4
(
1
), pp.
1
14
.10.1186/s40729-018-0119-5
40.
Frost
,
H. M.
,
1994
, “
Wolff's Law and Bone's Structural Adaptations to Mechanical Usage: An Overview for Clinicians
,”
Angle Orthod.
,
64
(
3
), pp.
175
188
.10.1043/0003-3219(1994)064<0175:WLABSA>2.0.CO;2
41.
Aversa
,
R.
,
Apicella
,
D.
,
Perillo
,
L.
,
Sorrentino
,
R.
,
Zarone
,
F.
,
Ferrari
,
M.
, and
Apicella
,
A.
,
2009
, “
Non-Linear Elastic Three-Dimensional Finite Element Analysis on the Effect of Endocrown Material Rigidity on Alveolar Bone Remodeling Process
,”
Dent. Mater.
,
25
(
5
), pp.
678
690
.10.1016/j.dental.2008.10.015
42.
Marcián
,
P.
,
Borák
,
L.
,
Valášek
,
J.
,
Kaiser
,
J.
,
Florian
,
Z.
, and
Wolff
,
J.
,
2014
, “
Finite Element Analysis of Dental Implant Loading on Atrophic and Non-Atrophic Cancellous and Cortical Mandibular Bone—A Feasibility Study
,”
J. Biomech.
,
47
(
16
), pp.
3830
3836
.10.1016/j.jbiomech.2014.10.019
43.
Fartash
,
B.
,
Arvidson
,
K.
, and
Ericsson
,
I.
,
1990
, “
Histology of Tissues Surrounding Single Crystal Sapphire Endosseous Dental Implants. An Experimental Study in the Beagle Dog*
,”
Clin. Oral Implants Res.
,
1
(
1
), pp.
13
21
.10.1034/j.1600-0501.1990.010103.x
44.
Chatterjee
,
S.
,
Sarkar
,
S.
,
Kalidindi
,
S. R.
, and
Basu
,
B.
,
2019
, “
Periprosthetic Biomechanical Response Towards Dental Implants, With Functional Gradation, for Single/Multiple Dental Loss
,”
J. Mech. Behav. Biomed. Mater.
,
94
, pp.
249
258
.10.1016/j.jmbbm.2019.03.001
45.
Ryu
,
H. S.
,
Namgung
,
C.
,
Lee
,
J. H.
, and
Lim
,
Y. J.
,
2014
, “
The Influence of Thread Geometry on Implant Osseointegration Under Immediate Loading: A Literature Review
,”
J. Adv. Prosthodont.
,
6
(
6
), pp.
547
554
.10.4047/jap.2014.6.6.547
46.
Ormianer
,
Z.
,
Matalon
,
S.
,
Block
,
J.
, and
Kohen
,
J.
,
2016
, “
Dental Implant Thread Design and the Consequences on Long-Term Marginal Bone Loss
,”
Implant Dent.
,
25
(
4
), pp.
471
477
.10.1097/ID.0000000000000441
47.
Lan
,
T. H.
,
Du
,
J. K.
,
Pan
,
C. Y.
,
Lee
,
H. E.
, and
Chung
,
W. H.
,
2012
, “
Biomechanical Analysis of Alveolar Bone Stress Around Implants With Different Thread Designs and Pitches in the Mandibular Molar Area
,”
Clin. Oral Investig.
,
16
(
2
), pp.
363
369
.10.1007/s00784-011-0517-z
48.
Wu
,
J. C.-H.
,
Chen
,
C.-S.
,
Yip
,
S.-W.
, and
Hsu
,
M.-L.
,
2012
, “
Stress Distribution and Micromotion Analyses of Immediately Loaded Implants of Varying Lengths in the Mandible and Fibular Bone Grafts: A Three-Dimensional Finite Element Analysis
,”
Int. J. Oral Maxillofac. Implants
,
27
(
5
), pp.
e77
e85
.https://www.academia.edu/29356520/Stress_distribution_and_micromotion_analyses_of_immediately_loaded_implants_of_varying_lengths_in_the_mandible_and_fibular_bone_grafts_a_three_dimensional_finite_element_analysis
49.
Schwitalla
,
A. D.
,
Abou-Emara
,
M.
,
Spintig
,
T.
,
Lackmann
,
J.
, and
Müller
,
W. D.
,
2015
, “
Finite Element Analysis of the Biomechanical Effects of PEEK Dental Implants on the Peri-Implant Bone
,”
J. Biomech.
,
48
(
1
), pp.
1
7
.10.1016/j.jbiomech.2014.11.017
50.
McCullough
,
J. J.
, and
Klokkevold
,
P. R.
,
2017
, “
The Effect of Implant Macro-Thread Design on Implant Stability in the Early Post-Operative Period: A Randomized, Controlled Pilot Study
,”
Clin. Oral Implants Res.
,
28
(
10
), pp.
1218
1226
.10.1111/clr.12945
51.
Alfarraj Aldosari
,
A.
,
Anil
,
S.
,
Alasqah
,
M.
,
Al Wazzan
,
K. A.
,
Al Jetaily
,
S. A.
, and
Jansen
,
J. A.
,
2014
, “
The Influence of Implant Geometry and Surface Composition on Bone Response
,”
Clin. Oral Implants Res.
,
25
(
4
), pp.
500
505
.10.1111/clr.12190
52.
Basu
,
B.
,
2017
,
Biomaterials for Musculoskeletal Regeneration—Concepts
,
Springer
,
Singapore
.
53.
Javed
,
F.
,
Ahmed
,
H.
,
Crespi
,
R.
, and
Romanos
,
G.
,
2013
, “
Role of Primary Stability for Successful Osseointegration of Dental Implants: Factors of Influence and Evaluation
,”
Interv. Med. Appl. Sci.
,
5
(
4
), pp.
162
167
.10.1556/imas.5.2013.4.3
54.
Steigenga
,
J.
,
Al-Shammari
,
K.
,
Misch
,
C.
,
Nociti
,
F. H.
, and
Wang
,
H.-L.
,
2004
, “
Effects of Implant Thread Geometry on Percentage of Osseointegration and Resistance to Reverse Torque in the Tibia of Rabbits
,”
J. Periodontol.
,
75
(
9
), pp.
1233
1241
.10.1902/jop.2004.75.9.1233
55.
Bing
,
L.
,
Mito
,
T.
,
Yoda
,
N.
,
Sato
,
E.
,
Shigemitsu
,
R.
,
Han
,
J.
, and
Sasaki
,
K.
,
2020
, “
Effect of Peri-Implant Bone Resorption on Mechanical Stress in the Implant Body: In Vivo Measured Load-Based Finite Element Analysis
,”
J. Oral Rehabil.
,
47
(
12
), pp.
1566
1573
.10.1111/joor.13097
56.
Cai
,
Y.
,
Yang
,
X.
,
He
,
B.
, and
Yao
,
J.
,
2015
, “
Finite Element Method Analysis of the Periodontal Ligament in Mandibular Canine Movement With Transparent Tooth Correction Treatment
,”
BMC Oral Health
,
15
(
1
), pp.
1
11
.10.1186/s12903-015-0091-x
57.
Knop
,
L.
,
Gandini
,
L. G.
,
Shintcovsk
,
R. L.
, and
Gandini
,
M. R.
,
2015
, “
Scientific Use of the Finite Element Method in Orthodontics
,”
Dent. Press J. Orthod.
,
20
(
2
), pp.
119
125
.10.1590/2176-9451.20.2.119-125.sar
58.
Basu
,
B.
, and
Ghosh
,
S.
,
2017
, “
Processing, Tensile and Fracture Properties of Injection Molded HDPE–Al2O3–HAp Hybrid Composites
,”
Biomaterials for Musculoskeletal Regeneration: Applications
,
B.
Raj
, and
U. K.
Mudali
, eds.,
Springer
,
Singapore
, pp.
125
150
.
59.
Javaid
,
M.
, and
Haleem
,
A.
,
2019
, “
Current Status and Applications of Additive Manufacturing in Dentistry: A Literature-Based Review
,”
J. Oral Biol. Craniofac. Res.
,
9
(
3
), pp.
179
185
.10.1016/j.jobcr.2019.04.004
60.
Oliveira
,
T. T.
, and
Reis
,
A. C.
,
2019
, “
Fabrication of Dental Implants by the Additive Manufacturing Method: A Systematic Review
,”
J. Prosthet. Dent.
,
122
(
3
), pp.
270
274
.10.1016/j.prosdent.2019.01.018
61.
Irinakis
,
T.
, and
Wiebe
,
C.
,
2009
, “
Initial Torque Stability of a New Bone Condensing Dental Implant. A Cohort Study of 140 Consecutively Placed Implants
,”
J. Oral Implantol.
,
35
(
6
), pp.
277
282
.10.1563/AAID-JOI-D-09-00020.1
You do not currently have access to this content.