Abstract

Contemporary finite element (FE) neck models are developed in a neutral posture; however, evaluation of injury risk for out-of-position impacts requires neck model repositioning to non-neutral postures, with much of the motion occurring in the upper cervical spine (UCS). Current neck models demonstrate a limitation in predicting the intervertebral motions within the UCS within the range of motion, while recent studies have highlighted the importance of including the tissue strains resulting from repositioning FE neck models to predict injury risk. In the current study, the ligamentous cervical spine from a contemporary neck model (GHBMC M50 v4.5) was evaluated in flexion, extension, and axial rotation by applying moments from 0 to 1.5 N·m in 0.5 N·m increments, as reported in experimental studies and corresponding to the physiologic loading of the UCS. Enhancements to the UCS model were identified, including the C0-C1 joint-space and alar ligament orientation. Following geometric enhancements, an analysis was undertaken to determine the UCS ligament laxities, using a sensitivity study followed by an optimization study. The ligament laxities were optimized to UCS-level experimental data from the literature. The mean percent difference between UCS model response and experimental data improved from 55% to 23% with enhancements. The enhanced UCS model was integrated with a ligamentous cervical spine (LS) model and assessed with independent experimental data. The mean percent difference between the LS model and the experimental data improved from 46% to 35% with the integration of the enhanced UCS model.

References

1.
Fice
,
J. B.
,
Blouin
,
J.-S.
, and
Siegmund
,
G. P.
,
2018
, “
Head Postures During Naturalistic Driving
,”
Traffic Inj. Prev.
,
19
(
6
), pp.
637
643
.10.1080/15389588.2018.1493582
2.
Ivancic
,
P. C.
,
Panjabi
,
M. M.
,
Tominaga
,
Y.
, and
Malcolmson
,
G. F.
,
2006
, “
Predicting Multiplanar Cervical Spine Injury Due to Head-Turned Rear Impacts Using IV-NIC
,”
Traffic Inj. Prev.
,
7
(
3
), pp.
264
275
.10.1080/15389580500488499
3.
Shateri
,
H.
, and
Cronin
,
D. S.
,
2015
, “
Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model
,”
Traffic Inj. Prev.
,
16
(
7
), pp.
698
708
.10.1080/15389588.2014.1003551
4.
Siegmund
,
G. P.
,
Davis
,
M. B.
,
Quinn
,
K. P.
,
Hines
,
E.
,
Myers
,
B. S.
,
Ejima
,
S.
,
Ono
,
K.
,
Kamiji
,
K.
,
Yasuki
,
T.
, and
Winkelstein
,
B. A.
,
2008
, “
Head-Turned Postures Increase the Risk of Cervical Facet Capsule Injury During Whiplash
,”
Spine (Phila. Pa. 1976)
,
33
(
15
), pp.
1643
1649
.10.1097/BRS.0b013e31817b5bcf
5.
Storvik
,
S. G.
, and
Stemper
,
B. D.
,
2011
, “
Axial Head Rotation Increases Facet Joint Capsular Ligament Strains in Automotive Rear Impact
,”
Med. Biol. Eng. Comput.
,
49
(
2
), pp.
153
161
.10.1007/s11517-010-0682-2
6.
John
,
J. D.
,
Saravana Kumar
,
G.
, and
Yoganandan
,
N.
,
2019
, “
Rear-Impact Neck Whiplash: Role of Head Inertial Properties and Spine Morphological Variations on Segmental Rotations
,”
ASME J. Biomech. Eng.
,
141
(
11
), p.
111008
.10.1115/1.4043666
7.
Jani
,
D.
,
Chawla
,
A.
,
Mukherjee
,
S.
,
Goyal
,
R.
,
Vusirikala
,
N.
, and
Jayaraman
,
S.
,
2012
, “
Repositioning the Knee Joint in Human Body FE Models Using a Graphics-Based Technique
,”
Traffic Inj. Prev.
,
13
(
6
), pp.
640
649
.10.1080/15389588.2012.664669
8.
Boakye-Yiadom
,
S.
, and
Cronin
,
D. S.
,
2018
, “
On the Importance of Retaining Stresses and Strains in Repositioning Computational Biomechanical Models of the Cervical Spine
,”
Int. J. Numer. Method. Biomed. Eng.
,
34
(
1
), p. e2905.10.1002/cnm.2905
9.
Menezes
,
A. H.
, and
Traynelis
,
V. C.
,
2008
, “
Anatomy and Biomechanics of Normal Craniovertebral Junction (a) and Biomechanics of Stabilization (b)
,”
Child's Nerv. Syst.
,
24
(
10
), pp.
1091
1100
.10.1007/s00381-008-0606-8
10.
Bogduk
,
N.
, and
Mercer
,
S.
,
2000
, “
Biomechanics of the Cervical Spine. I: Normal Kinematics
,”
Clin. Biomech. (Bristol, Avon)
,
15
(
9
), pp.
633
648
.10.1016/S0268-0033(00)00034-6
11.
Steilen
,
D.
,
Hauser
,
R.
,
Woldin
,
B.
, and
Sawyer
,
S.
,
2014
, “
Chronic Neck Pain: Making the Connection Between Capsular Ligament Laxity and Cervical Instability
,”
Open Orthop. J.
,
8
(
1
), pp.
326
345
.10.2174/1874325001408010326
12.
Chancey
,
V. C.
,
Ottaviano
,
D.
,
Myers
,
B. S.
, and
Nightingale
,
R. W.
,
2007
, “
A Kinematic and Anthropometric Study of the Upper Cervical Spine and the Occipital Condyles
,”
J. Biomech.
,
40
(
9
), pp.
1953
1959
.10.1016/j.jbiomech.2006.09.007
13.
Debernardi
,
A.
,
D'Aliberti
,
G.
,
Talamonti
,
G.
,
Villa
,
F.
,
Piparo
,
M.
, and
Collice
,
M.
,
2015
, “
The Craniovertebral Junction Area and the Role of the Ligaments and Membranes
,”
Neurosurgery
,
76
(
Suppl 1
), pp.
S22
S32
.10.1227/01.neu.0000462075.73701.d2
14.
Crisco
,
J. J.
,
3rd
,
T.
,
Oda
,
M. M.
,
Panjabi
,
H. U.
,
Bueff
,
J.
,
Dvorák
,
D.
, and
Grob
,
1.
,
1976
, “
Transections of the C1-C2 Joint Capsular Ligaments in the Cadaveric Spine
,”
Spine (Phila. Pa 1976)
,
16
(
10 Suppl
), p.
S474-9
.10.1097/00007632-199110001-00003
15.
Panjabi
,
M.
,
Dvorak
,
J.
,
Crisco
,
J. J.
III
,
Oda
,
T.
,
Wang
,
P.
, and
Grob
,
D.
,
1991
, “
Effects of Alar Ligament Transection on Upper Cervical Spine Rotation
,”
J. Orthop. Res.
,
9
(
4
), pp.
584
593
.10.1002/jor.1100090415
16.
Moore
,
K. L.
, and
Dalley
,
A. F.
,
1999
,
Clinically Oriented Anatomy
, Lippincott Williams & Wilkins, Philadelphia, PA.
17.
Beyer
,
B.
,
Feipel
,
V.
, and
Dugailly
,
P.-M.
,
2020
, “
Biomechanics of the Upper Cervical Spine Ligaments in Axial Rotation and Flexion-Extension: Considerations Into the Clinical Framework
,”
J. Craniovertebral Junction Spine
,
11
(
3
), pp.
217
225
.10.4103/jcvjs.JCVJS_78_20
18.
Oda
,
T.
,
Panjabi
,
M. M.
,
Crisco
,
J. J.
, 3rd
,
Bueff
,
H. U.
,
Grob
,
D.
, and
Dvorak
,
J.
,
1992
, “
Role of Tectorial Membrane in the Stability of the Upper Cervical Spine
,”
Clin. Biomech. (Bristol, Avon)
,
7
(
4
), pp.
201
207
.10.1016/S0268-0033(92)90002-L
19.
Panjabi
,
M.
,
Dvorak
,
J.
,
Crisco
,
J.
, 3rd
,
Oda
,
T.
,
Hilibrand
,
A.
, and
Grob
,
D.
,
1991
, “
Flexion, Extension, and Lateral Bending of the Upper Cervical Spine in Response to Alar Ligament Transections
,”
J. Spinal Disord
,
4
(
2
), pp.
157
167
.10.1097/00002517-199106000-00005
20.
Heller
,
J. G.
,
Pedlow
,
F. X.
Jr.
, and
Gill
,
S. S.
,
2005
, “
Anatomy of the Cervical Spine
,”
Lippincott Williams & Wilkins, Philadelphia, PA
, pp.
3
12
.
21.
Swartz
,
E. E.
,
Floyd
,
R. T.
, and
Cendoma
,
M.
,
2005
, “
Cervical Spine Functional Anatomy and the Biomechanics of Injury Due to Compressive Loading
,”
J. Athl. Train.
,
40
(
3
), pp.
155
161
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1250253/
22.
Ivancic
,
P. C.
,
2013
, “
Effects of Orthoses on Three-Dimensional Load-Displacement Properties of the Cervical Spine
,”
Eur. Spine J.
,
22
(
1
), pp.
169
177
.10.1007/s00586-012-2552-0
23.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine (Phila. Pa. 1976)
,
26
(
24
), pp.
2692
2700
.10.1097/00007632-200112150-00012
24.
Panjabi
,
M. M.
,
Nibu
,
K.
, and
Cholewicki
,
J.
,
1998
, “
Whiplash Injuries and the Potential for Mechanical Instability
,”
Eur. spine J.
,
7
(
6
), pp.
484
492
.10.1007/s005860050112
25.
Nightingale
,
R. W.
,
Carol Chancey
,
V.
,
Ottaviano
,
D.
,
Luck
,
J. F.
,
Tran
,
L.
,
Prange
,
M.
, and
Myers
,
B. S.
,
2007
, “
Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments
,”
J. Biomech.
,
40
(
3
), pp.
535
542
.10.1016/j.jbiomech.2006.02.015
26.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.10.1016/j.jbiomech.2004.11.014
27.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
,
2002
, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
,
35
(
6
), pp.
725
732
.10.1016/S0021-9290(02)00037-4
28.
Goel
,
V. K.
,
Clark
,
C. R.
,
Gallaes
,
K.
, and
Liu
,
Y. K.
,
1988
, “
Moment-Rotation Relationships of the Ligamentous Occipito-Atlanto-Axial Complex
,”
J. Biomech.
,
21
(
8
), pp.
673
680
.10.1016/0021-9290(88)90204-7
29.
Möller
,
J.
,
Nolte
,
L.-P.
,
Visarius
,
H.
,
Willburger
,
R.
,
Crisco
,
J. J.
, and
Panjabi
,
M. M.
,
1992
, “
Viscoelasticity of the Alar and Transverse Ligaments
,”
Eur. spine J.
,
1
(
3
), pp.
178
184
.10.1007/BF00301310
30.
Goel
,
V. K.
,
Winterbottom
,
J. M.
,
Schulte
,
K.
,
Chang
,
H. A. N.
,
Gilbertson
,
L. G.
,
Pudgil
,
A. G.
, and
Gwon
,
J. K.
,
1990
, “
Ligamentous Laxity Across C0-C1-C2 Complex: Axial Torque-Rotation Characteristics Until Failure
,”
Spine (Phila. Pa. 1976)
,
15
(
10
), pp.
990
996
.10.1097/00007632-199015100-00002
31.
Hill
,
I.
,
2013
,
A Novel Testing Platforms for Characterizing Cervical Spine Biomechanics
,
University of Florida
, Gainesville, FL.
32.
Hidalgo-García
,
C.
,
Lorente
,
A. I.
,
López-de-Celis
,
C.
,
Lucha-López
,
O.
,
Malo-Urriés
,
M.
,
Rodríguez-Sanz
,
J.
,
Maza-Frechín
,
M.
,
Tricás-Moreno
,
J. M.
,
Krauss
,
J.
, and
Pérez-Bellmunt
,
A.
,
2021
, “
Effects of Occipital-Atlas Stabilization in the Upper Cervical Spine Kinematics: An In Vitro Study
,”
Sci. Rep.
,
11
(
1
), p.
10853
.10.1038/s41598-021-90052-6
33.
Fujimori
,
T.
,
Le
,
H.
,
Ziewacz
,
J. E.
,
Chou
,
D.
, and
Mummaneni
,
P. V.
,
2013
, “
Is There a Difference in Range of Motion, Neck Pain, and Outcomes in Patients With Ossification of Posterior Longitudinal Ligament Versus Those With Cervical Spondylosis, Treated With Plated Laminoplasty?
,”
Neurosurg. Focus
,
35
(
1
), p.
E9
.10.3171/2013.4.FOCUS1394
34.
Hadagali
,
P.
, and
Cronin
,
D. S.
,
2020
, “
Quantification of Upper Cervical Spine Motion Sensitivity to Ligament Laxity Using a Finite Element Human Body Model for Occupant Safety
,”
International Research Council on Biomechanics of Injury
, Berlin, Germany, Sept. 8–10, pp.
229
230
.http://www.ircobi.org/wordpress/downloads/irc20/pdf-files/36.pdf
35.
Barker
,
J. B.
, and
Cronin
,
D.
,
2020
, “
Multi-Level Validation of a Male Neck Finite Element Model With Active Musculature
,”
ASME J. Biomech. Eng.
, 143(1), p.
011004
.10.1115/1.4047866
36.
Correia
,
M. A.
,
McLachlin
,
S. D.
, and
Cronin
,
D. S.
,
2020
, “
Optimization of Muscle Activation Schemes in a Finite Element Neck Model Simulating Volunteer Frontal Impact Scenarios
,”
J. Biomech.
,
104
, p.
109754
.10.1016/j.jbiomech.2020.109754
37.
Lasswell
,
T. L.
,
Cronin
,
D. S.
,
Medley
,
J. B.
, and
Rasoulinejad
,
P.
,
2017
, “
Incorporating Ligament Laxity in a Finite Element Model for the Upper Cervical Spine
,”
Spine J.
,
17
(
11
), pp.
1755
1764
.10.1016/j.spinee.2017.06.040
38.
Barker
,
J. B.
,
Cronin
,
D. S.
, and
Nightingale
,
R. W.
,
2017
, “
Lower Cervical Spine Motion Segment Computational Model Validation: Kinematic and Kinetic Response for Quasi-Static and Dynamic Loading
,”
ASME J. Biomech. Eng.
,
139
(
6
), p.
061009
.10.1115/1.4036464
39.
Rojas
,
C. A.
,
Bertozzi
,
J. C.
,
Martinez
,
C. R.
, and
Whitlow
,
J.
,
2007
, “
Reassessment of the Craniocervical Junction: Normal Values on CT
,”
Am. J. Neuroradiol.
,
28
(
9
), pp.
1819
1823
.10.3174/ajnr.A0660
40.
Cronin
,
D. S.
,
Fice
,
J. B.
,
Dewit
,
J. A.
, and
Moulton
,
J.
,
2012
, “
Upper Cervical Spine Kinematic Response and Injury Prediction
,”
IRCOBI Conference Proceedings - International Research Council on the Biomechanics of Injury
, Dublin, Ireland, Sept. 12–14, pp.
225
234
.http://www.ircobi.org/wordpress/downloads/irc12/pdf_files/30.pdf
41.
Camacho
,
D. L.
,
Nightingale
,
R. W.
,
Robinette
,
J. J.
,
Vanguri
,
S. K.
,
Coates
,
D. J.
, and
Myers
,
B. S.
,
1997
, “
Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact
,”
SAE
Paper No. 973345.10.4271/973345
42.
Brolin
,
K.
, and
Halldin
,
P.
,
2004
, “
Development of a Finite Element Model of the Upper Cervical Spine and a Parameter Study of Ligament Characteristics
,”
Spine (Phila. Pa. 1976)
,
29
(
4
), pp.
376
385
.10.1097/01.BRS.0000090820.99182.2D
43.
Halldin
,
P. H.
,
Brolin
,
K.
,
Kleiven
,
S.
,
von Holst
,
H.
,
Jakobsson
,
L.
, and
Palmertz
,
C.
,
2000
, “
Investigation of Conditions That Affect Neck Compression- Flexion Injuries Using Numerical Techniques
,”
Stapp Car Crash J.
,
44
, pp.
127
138
.10.4271/2000-01-SC10
44.
Liu
,
H.
,
Zhang
,
B.
,
Lei
,
J.
,
Cai
,
X.
,
Li
,
Z.
, and
Wang
,
Z.
,
2016
, “
Biomechanical Role of the C1 Lateral Mass Screws in Occipitoatlantoaxial Fixation: A Finite Element Analysis
,”
Spine (Phila. Pa. 1976
),
41
(
22
), pp.
E1312
E1318
.10.1097/BRS.0000000000001637
45.
Zhang
,
Q. H.
,
Teo
,
E. C.
, and
Ng
,
H. W.
,
2005
, “
Development and Validation of a CO-C7 FE Complex for Biomechanical Study
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
729
735
.10.1115/1.1992527
46.
Toosizadeh
,
N.
, and
Haghpanahi
,
M.
,
2011
, “
Generating a Finite Element Model of the Cervical Spine: Estimating Muscle Forces and Internal Loads
,”
Sci. Iran.
,
18
(
6
), pp.
1237
1245
.10.1016/j.scient.2011.10.002
47.
Mesfar
,
W.
, and
Moglo
,
K.
,
2013
, “
Effect of the Transverse Ligament Rupture on the Biomechanics of the Cervical Spine Under a Compressive Loading
,”
Clin. Biomech. (Bristol, Avon)
,
28
(
8
), pp.
846
852
.10.1016/j.clinbiomech.2013.07.016
48.
Osth
,
J.
,
Brolin
,
K.
,
Svensson
,
M. Y.
, and
Linder
,
A.
,
2016
, “
A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads
,”
ASME J. Biomech. Eng.
,
138
(
6
), p. 0
61005
.10.1115/1.4032966
49.
Herron
,
M. R.
,
Park
,
J.
,
Dailey
,
A. T.
,
Brockmeyer
,
D. L.
, and
Ellis
,
B. J.
,
2020
, “
Febio Finite Element Models of the Human Cervical Spine
,”
J. Biomech.
,
113
, p.
110077
.10.1016/j.jbiomech.2020.110077
50.
Yang
,
R. J.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
,
2005
, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1014
1020
.10.1115/1.1906264
51.
John
,
J. D.
,
Yoganandan
,
N.
,
Arun
,
M. W. J.
, and
Saravana Kumar
,
G.
,
2018
, “
Influence of Morphological Variations on Cervical Spine Segmental Responses From Inertial Loading
,”
Traffic Inj. Prev.
,
19
(
sup1
), pp.
S29
S36
.10.1080/15389588.2017.1403017
You do not currently have access to this content.