Abstract

Reactive viscoelasticity is a theoretical framework based on the theory of reactive constrained mixtures that encompasses nonlinear viscoelastic responses. It models a viscoelastic solid as a mixture of strong and weak bonds that maintain the cohesiveness of the molecular constituents of the solid matter. Strong bonds impart the elastic response while weak bonds break and reform into a stress-free state in response to loading. The process of bonds breaking and reforming is modeled as a reaction where loaded bonds are the reactants and bonds reformed into a stress-free state are the products of a reaction. The reaction is triggered by the evolving state of loading. The state of stress in strong bonds is a function of the total strain in the material, whereas the state of stress in weak bonds is based on the state of strain relative to the time that these bonds were reformed. This study introduces two important practical contributions to the reactive nonlinear viscoelasticity framework: (1) normally, the evaluation of the stress tensor involves taking a summation over a continually increasing number of weak bond generations, which is poorly suited for a computational scheme. Therefore, this study presents an effective numerical scheme for evaluating the strain energy density, the Cauchy stress, and spatial elasticity tensors of reactive viscoelastic materials. (2) We provide the conditions for satisfying frame indifference for anisotropic nonlinear viscoelasticity, including for tension-bearing fiber models. Code verifications and model validations against experimental data provide evidence in support of this updated formulation.

References

1.
Ateshian
,
G. A.
,
2015
, “
Viscoelasticity Using Reactive Constrained Solid Mixtures
,”
J Biomech.
,
48
(
6
), pp.
941
947
.10.1016/j.jbiomech.2015.02.019
2.
Nims
,
R. J.
, and
Ateshian
,
G. A.
,
2017
, “
Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues
,”
J. Elast.
,
129
(
1–2
), pp.
69
105
.10.1007/s10659-017-9630-9
3.
Humphrey
,
J.
, and
Rajagopal
,
K.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Mod. Meth. Appl. Sci.
,
12
(
03
), pp.
407
430
.10.1142/S0218202502001714
4.
Ateshian
,
G. A.
, and
Ricken
,
T.
,
2010
, “
Multigenerational Interstitial Growth of Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
689
702
.10.1007/s10237-010-0205-y
5.
Wineman
,
A.
, and
Rajagopal
,
K.
,
1990
, “
On a Constitutive Theory for Materials Undergoing Microstructural Changes
,”
Arch. Mech.
,
42
(
1
), pp.
53
75
.https://www.semanticscholar.org/paper/On-aconstitutive-theory-for-materials-undergoing-Wineman-Rajagopal/346d45859f49bf7bc53e167323701f0feff83ad4
6.
Wineman
,
A.
,
2009
, “
On the Mechanics of Elastomers Undergoing Scission and Cross-Linking
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
1
(
2–3
), pp.
123
131
.10.1007/s12572-010-0004-9
7.
Green
,
M.
, and
Tobolsky
,
A.
,
1946
, “
A New Approach to the Theory of Relaxing Polymeric Media
,”
J. Chem. Phys.
,
14
(
2
), pp.
80
92
.10.1063/1.1724109
8.
Tobolsky
,
A. V.
,
1960
,
Properties and Structure of Polymers
,
Wiley & Sons
,
New York and London
.
9.
Fung
,
Y.
,
1981
,
Biomechanics
, Vol.
445
,
Springer-Verlag
,
New York
.
10.
Holzapfel
,
G. A.
, and
Simo
,
J. C.
,
1996
, “
A New Viscoelastic Constitutive Model for Continuous Media at Finite Thermomechanical Changes
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
3019
3034
.10.1016/0020-7683(95)00263-4
11.
Holzapfel
,
G. A.
,
1996
, “
On Large Strain Viscoelasticity: Continuum Formulation and Finite Element Applications to Elastomeric Structures
,”
Int. J. Numer. Meth. Eng.
,
39
(
22
), pp.
3903
3926
.10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C
12.
Park
,
S.
, and
Ateshian
,
G. A.
,
2006
, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
623
630
.10.1115/1.2206201
13.
Hingorani
,
R. V.
,
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Escarcega
,
A.
, and
Vanderby
,
R.
, Jr
.,
2004
, “
Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
306
312
.10.1023/B:ABME.0000012751.31686.70
14.
Duenwald
,
S. E.
,
Vanderby
,
R.
, Jr.
, and
Lakes
,
R. S.
,
2009
, “
Viscoelastic Relaxation and Recovery of Tendon
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1131
1140
.10.1007/s10439-009-9687-0
15.
Bezci
,
S. E.
,
Lim
,
S.
, and
O'Connell
,
G. D.
,
2020
, “
Nonlinear Stress-Dependent Recovery Behavior of the Intervertebral Disc
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103881
.10.1016/j.jmbbm.2020.103881
16.
Amabili
,
M.
,
Balasubramanian
,
P.
, and
Breslavsky
,
I.
,
2019
, “
Anisotropic Fractional Viscoelastic Constitutive Models for Human Descending Thoracic Aortas
,”
J. Mech. Behav. Biomed. Mater.
,
99
, pp.
186
197
.10.1016/j.jmbbm.2019.07.010
17.
Lakes
,
R. S.
, and
Vanderby
,
R.
,
1999
, “
Interrelation of Creep and Relaxation: A Modeling Approach for Ligaments
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
612
615
.10.1115/1.2800861
18.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
, Jr.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.10.1114/1.1408926
19.
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Corr
,
D. T.
, and
Vanderby
,
R.
, Jr
.,
2002
, “
Application of Nonlinear Viscoelastic Models to Describe Ligament Behavior
,”
Biomech. Model. Mechanobiol.
,
1
(
1
), pp.
45
57
.10.1007/s10237-002-0004-1
20.
Duenwald
,
S. E.
,
Vanderby
,
R.
, Jr.
, and
Lakes
,
R. S.
,
2010
, “
Stress Relaxation and Recovery in Tendon and Ligament: Experiment and Modeling
,”
Biorheology
,
47
(
1
), pp.
1
14
.10.3233/BIR-2010-0559
21.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(
26–27
), pp.
3455
3482
.10.1016/S0020-7683(97)00217-5
22.
Liu
,
H.
,
Holzapfel
,
G. A.
,
Skallerud
,
B. H.
, and
Prot
,
V.
,
2019
, “
Anisotropic Finite Strain Viscoelasticity: Constitutive Modeling and Finite Element Implementation
,”
J. Mech. Phys. Solids
,
124
, pp.
172
188
.10.1016/j.jmps.2018.09.014
23.
Nims
,
R. J.
,
Durney
,
K. M.
,
Cigan
,
A. D.
,
Dusséaux
,
A.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2016
, “
Continuum Theory of Fibrous Tissue Damage Mechanics Using Bond Kinetics: Application to Cartilage Tissue Engineering
,”
Interface Focus
,
6
(
1
), p.
20150063
.10.1098/rsfs.2015.0063
24.
Rausch
,
M. K.
,
Sugerman
,
G. P.
,
Kakaletsis
,
S.
, and
Dortdivanlioglu
,
B.
,
2021
, “
Hyper-Viscoelastic Damage Modeling of Whole Blood Clot Under Large Deformation
,”
Biomech. Model. Mechanobiol.
,
20
(
5
), pp.
1645
1657
.10.1007/s10237-021-01467-z
25.
Puso
,
M.
, and
Weiss
,
J.
,
1998
, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
62
70
.10.1115/1.2834308
26.
Suh
,
J. K.
, and
Bai
,
S.
,
1998
, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
195
201
.10.1115/1.2798302
27.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
New York
.
28.
Jacobsen
,
T. D.
,
2022
, “
Relationship Between Inflammatory Stimulation and Cell Biomechanics in Intervertebral Disc Degeneration
,”
Ph.D. thesis
,
Columbia University
,
New York
.https://academiccommons.columbia.edu/doi/10.7916/p9xt-jd20
29.
Zimmerman
,
B. K.
,
Jiang
,
D.
,
Weiss
,
J. A.
,
Timmins
,
L. H.
, and
Ateshian
,
G. A.
,
2021
, “
On the Use of Constrained Reactive Mixtures of Solids to Model Finite Deformation Isothermal Elastoplasticity and Elastoplastic Damage Mechanics
,”
J. Mech. Phys. Solids
,
155
, p.
104534
.10.1016/j.jmps.2021.104534
30.
Ateshian
,
G. A.
, and
Zimmerman
,
B. K.
,
2022
, “
Continuum Thermodynamics of Constrained Reactive Mixtures
,”
ASME J. Biomech. Eng.
,
144
(
4
), p.
041011
.10.1115/1.4053084
31.
Hou
,
C.
, and
Ateshian
,
G. A.
,
2016
, “
A Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues With Continuous Fiber Distributions
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
8
), pp.
883
893
.10.1080/10255842.2015.1075518
32.
Criscione
,
J. C.
,
Humphrey
,
J. D.
,
Douglas
,
A. S.
, and
Hunter
,
W. C.
,
2000
, “
An Invariant Basis for Natural Strain Which Yields Orthogonal Stress Response Terms in Isotropic Hyperelasticity
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2445
2465
.10.1016/S0022-5096(00)00023-5
33.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
Febio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
34.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
35.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
410
417
.10.1115/1.1392316
36.
Huang
,
C.-Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
84
93
.10.1115/1.1531656
37.
Chahine
,
N. O.
,
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
,
37
(
8
), pp.
1251
1261
.10.1016/j.jbiomech.2003.12.008
38.
Fung
,
Y. C.
,
Perrone
,
N.
, and
Anliker
,
M.
,
1972
,
Biomechanics, Its Foundations and Objectives
,
Prentice Hall
,
Englewood Cliffs, NJ
.
39.
Malkin
,
A. Y.
,
2006
, “
Continuous Relaxation Spectrum-Its Advantages and Methods of Calculation
,”
Appl. Mech. Eng.
,
11
(
2
), p.
235
.https://www.researchgate.net/publication/292716774_Continuous_relaxation_spectrum-its_advantages_and_methods_of_calculation
You do not currently have access to this content.