Abstract

Current lower limb musculoskeletal (MSK) models focus on sagittal plane kinematics. However, abnormal gait is typically associated with sagittal plane motions crossing into other planes, limiting the use of current MSK models. The purpose of this study was twofold, first, to extend the capability of a full-body MSK model from the literature to include frontal knee plane kinematics during healthy gait, and second, to propose and implement a realistic muscle discretization technique. Two MSK model constructs were derived—the first construct (Knee2_SM) allowed two degrees-of-freedom (sagittal and coronal) at the knee and the second construct (Knee2_MM) implemented multiline elements for all the lower limb muscles in conjunction with two knee degrees-of-freedom. Motion analysis data of normal gait cycle from 10 healthy adults were used to compare joint kinematics, muscle moment arms, muscle forces, and muscle activations, between new constructs and the original model. Knee varus-valgus trajectories were estimated with the mean peak values ranging from 9.49 deg valgus to 1.57 deg varus. Knee2_MM predicted a significant difference (p < 0.05) in moment arms and forces in those muscles responsible for medial–lateral stability of the knee. The simulated muscle activations generated by the Knee2_MM model matched more closely to the experimental electromyography (EMG) when qualitatively compared. This study enhances the capability of the sagittal plane full-body MSK model to incorporate knee varus-valgus motion while keeping the joint stability intact and improving muscle prediction.

References

1.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2008
, “
Muscle Contributions to Support and Progression Over a Range of Walking Speeds
,”
J. Biomech.
,
41
(
15
), pp.
3243
3252
.10.1016/j.jbiomech.2008.07.031
2.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.10.1016/S0021-9290(01)00105-1
3.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
4.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
5.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
6.
Lloyd
,
J. E.
,
Stavness
,
I.
, and
Fels
,
S.
,
2012
, “
ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation
,”
Soft Tissue Biomechanical Modeling for Computer Assisted Surgery
,
Y.
Payan
ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
355
394
.
7.
Steele
,
K. M.
,
van der Krogt
,
M. M.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2012
, “
How Much Muscle Strength is Required to Walk in a Crouch Gait?
,”
J. Biomech.
,
45
(
15
), pp.
2564
2569
.10.1016/j.jbiomech.2012.07.028
8.
Arnold
,
A. S.
,
Asakawa
,
D. J.
, and
Delp
,
S. L.
,
2000
, “
Do the Hamstrings and Adductors Contribute to Excessive Internal Rotation of the Hip in Persons With Cerebral Palsy?
,”
Gait Posture
,
11
(
3
), pp.
181
190
.10.1016/S0966-6362(00)00046-1
9.
Rajagopal
,
A.
,
Dembia
,
C. L.
,
DeMers
,
M. S.
,
Delp
,
D. D.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
10.
Handsfield
,
G. G.
,
Meyer
,
C. H.
,
Hart
,
J. M.
,
Abel
,
M. F.
, and
Blemker
,
S. S.
,
2014
, “
Relationships of 35 Lower Limb Muscles to Height and Body Mass Quantified Using MRI
,”
J. Biomech.
,
47
(
3
), pp.
631
638
.10.1016/j.jbiomech.2013.12.002
11.
Ward
,
S. R.
,
Eng
,
C. M.
,
Smallwood
,
L. H.
, and
Lieber
,
R. L.
,
2009
, “
Are Current Measurements of Lower Extremity Muscle Architecture Accurate?
,”
Clin. Orthop. Relat. Res.
,
467
(
4
), pp.
1074
1082
.10.1007/s11999-008-0594-8
12.
Perry
,
J.
, and
Judith
,
B.
,
1992
,
Gait Analysis: Normal and Pathological Function
,
Slack Incorporated
, Thorofare,
NJ
.
13.
Xu
,
H.
,
Bloswick
,
D.
, and
Merryweather
,
A.
,
2015
, “
An Improved OpenSim Gait Model With Multiple Degrees of Freedom Knee Joint and Knee Ligaments
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1217
1224
.10.1080/10255842.2014.889689
14.
Guess
,
T. M.
,
Liu
,
H.
,
Bhashyam
,
S.
, and
Thiagarajan
,
G.
,
2013
, “
A Multibody Knee Model With Discrete Cartilage Prediction of Tibio-Femoral Contact Mechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
3
), pp.
256
270
.10.1080/10255842.2011.617004
15.
Marouane
,
H.
,
Shirazi-Adl
,
A.
, and
Adouni
,
M.
,
2016
, “
Alterations in Knee Contact Forces and Centers in Stance Phase of Gait: A Detailed Lower Extremity Musculoskeletal Model
,”
J. Biomech.
,
49
(
2
), pp.
185
192
.10.1016/j.jbiomech.2015.12.016
16.
Cleather
,
D. J.
, and
Bull
,
A. M. J.
,
2010
, “
Lower-Extremity Musculoskeletal Geometry Affects the Calculation of Patellofemoral Forces in Vertical Jumping and Weightlifting
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
224
(
9
), pp.
1073
1083
.10.1243/09544119JEIM731
17.
Ming
,
X.
, and
Jill
,
H.
,
2010
, “
Sensitivity of Estimated Muscle Force in Forward Simulation of Normal Walking
,”
J. Appl. Biomech.
,
26
(
2
), pp.
142
149
.
18.
van der Helm
,
F. C. T.
, and
Veenbaas
,
R.
,
1991
, “
Modelling the Mechanical Effect of Muscles With Large Attachment Sites: Application to the Shoulder Mechanism
,”
J. Biomech.
,
24
(
12
), pp.
1151
1163
.10.1016/0021-9290(91)90007-A
19.
Walker
,
P. S.
,
Rovick
,
J. S.
, and
Robertson
,
D. D.
,
1988
, “
The Effects of Knee Brace Hinge Design and Placement on Joint Mechanics
,”
J. Biomech.
,
21
(
11
), pp.
965
974
.10.1016/0021-9290(88)90135-2
20.
Abid
,
M.
,
Mezghani
,
N.
, and
Mitiche
,
A.
,
2019
, “
Knee Joint Biomechanical Gait Data Classification for Knee Pathology Assessment: A Literature Review
,”
Appl. Bionics Biomech.
,
2019
, pp.
1
14
.10.1155/2019/7472039
21.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
22.
Standring
,
S.
, ed.,
2015
,
Gray's Anatomy the Anatomical Basis of Clinical Practice
,
Elsevier
, London, UK.
23.
Piazza
,
S. J.
,
Okita
,
N.
, and
Cavanagh
,
P. R.
,
2001
, “
Accuracy of the Functional Method of Hip Joint Center Location: Effects of Limited Motion and Varied Implementation
,”
J. Biomech.
,
34
(
7
), pp.
967
973
.10.1016/S0021-9290(01)00052-5
24.
Siston
,
R. A.
, and
Delp
,
S. L.
,
2006
, “
Evaluation of a New Algorithm to Determine the Hip Joint Center
,”
J. Biomech.
,
39
(
1
), pp.
125
130
.10.1016/j.jbiomech.2004.10.032
25.
Barre
,
A.
, and
Armand
,
S.
,
2014
, “
Biomechanical ToolKit: Open-Source Framework to Visualize and Process Biomechanical Data
,”
Comput. Methods Programs Biomed.
,
114
(
1
), pp.
80
87
.10.1016/j.cmpb.2014.01.012
26.
Pataky
,
T. C.
,
2010
, “
Generalized n-Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
,”
J. Biomech.
,
43
(
10
), pp.
1976
1982
.10.1016/j.jbiomech.2010.03.008
27.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
,
2003
, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Knee Axis
,”
J. Biomech.
,
36
(
8
), pp.
1159
1168
.10.1016/S0021-9290(03)00087-3
28.
John
,
H. H.
,
Jeffrey
,
M. H.
,
Jordan
,
L. K.
,
Jeffrey
,
D. S.
, and
Katie
,
J. T.
,
2013
, “
Modulation of Frontal-Plane Knee Kinematics by Hip-Extensor Strength and Gluteus Maximus Recruitment During a Jump-Landing Task in Healthy Women
,”
J. Sport Rehabil.
,
22
(
3
), pp.
184
190
.
29.
Saki
,
F.
,
Rajabi
,
R.
,
Alizadeh
,
M. h.
, and
Tabatabaei
,
F.
,
2014
, “
Relationship Between Hip and Knee Strength and Knee Valgus Angle During Drop Jump in Elite Female Athletes
,”
USWR
,
4
(
1
), pp.
39
46
.
30.
Zeller
,
B. L.
,
McCrory
,
J. L.
,
Ben Kibler
,
W.
, and
Uhl
,
T. L.
,
2003
, “
Differences in Kinematics and Electromyographic Activity Between Men and Women During the Single-Legged Squat
,”
Am. J. Sports Med.
,
31
(
3
), pp.
449
456
.10.1177/03635465030310032101
31.
Growney
,
E.
,
Meglan
,
D.
,
Johnson
,
M.
,
Cahalan
,
T.
, and
An
,
K.-N.
,
1997
, “
Repeated Measures of Adult Normal Walking Using a Video Tracking system1Presented in Part at the 1st Annual North American Clinical Gait Laboratory Conference, April 7–9 1994, Portland, or, USA.1
,”
Gait Posture
,
6
(
2
), pp.
147
162
.10.1016/S0966-6362(97)01114-4
32.
Hagemeister
,
N.
,
Parent
,
G.
,
Van de Putte
,
M.
,
St-Onge
,
N.
,
Duval
,
N.
, and
de Guise
,
J.
,
2005
, “
A Reproducible Method for Studying Three-Dimensional Knee Kinematics
,”
J. Biomech.
,
38
(
9
), pp.
1926
1931
.10.1016/j.jbiomech.2005.05.013
33.
Zhang
,
L.-Q.
,
Shiavi
,
R. G.
,
Limbird
,
T. J.
, and
Minorik
,
J. M.
,
2003
, “
Six Degrees-of-Freedom Kinematics of ACL Deficient Knees During Locomotion—Compensatory Mechanism
,”
Gait Posture
,
17
(
1
), pp.
34
42
.10.1016/S0966-6362(02)00052-8
34.
Liu
,
R.
,
Qian
,
D.
,
Chen
,
Y.
,
Zou
,
J.
,
Zheng
,
S.
,
Bai
,
B.
,
Lin
,
Z.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2021
, “
Investigation of Normal Knees Kinematics in Walking and Running at Different Speeds Using a Portable Motion Analysis System
,”
Sports Biomech.
, epub, pp.
1
14
.10.1080/14763141.2020.1864015
35.
Skaro
,
J.
,
Hazelwood
,
S. J.
, and
Klisch
,
S. M.
,
2021
, “
Knee Angles After Crosstalk Correction With Principal Component Analysis in Gait and Cycling
,”
ASME J. Biomech. Eng.
,
143
(
5
), p. 054501.10.1115/1.4049809
36.
Baudet
,
A.
,
Morisset
,
C.
,
d'Athis
,
P.
,
Maillefert
,
J. F.
,
Casillas
,
J. M.
,
Ornetti
,
P.
, and
Laroche
,
D.
,
2014
, “
Cross-Talk Correction Method for Knee Kinematics in Gait Analysis Using Principal Component Analysis (PCA): A New Proposal
,”
PLoS One
,
9
(
7
), p.
e102098
.10.1371/journal.pone.0102098
37.
Andriacchi
,
T. P.
,
Andersson
,
G. B. J.
,
Örtengren
,
R.
, and
Mikosz
,
R. P.
,
1983
, “
A Study of Factors Influencing Muscle Activity About the Knee Joint
,”
J. Orthop. Res.
,
1
(
3
), pp.
266
275
.10.1002/jor.1100010306
38.
Buchanan
,
T. S.
, and
Lloyd
,
D. G.
,
1997
, “
Muscle Activation at the Human Knee During Isometric Flexion-Extension and Varus-Valgus Loads
,”
J. Orthop. Res.
,
15
(
1
), pp.
11
17
.10.1002/jor.1100150103
39.
Kawada
,
M.
,
Takeshita
,
Y.
,
Miyazaki
,
T.
,
Nakai
,
Y.
,
Hata
,
K.
,
Nakatsuji
,
S.
, and
Kiyama
,
R.
,
2020
, “
Contribution of Hip and Knee Muscles to Lateral Knee Stability During Gait
,”
J. Phys. Ther. Sci.
,
32
(
11
), pp.
729
734
.10.1589/jpts.32.729
40.
Lloyd
,
D. G.
, and
Buchanan
,
T. S.
,
2001
, “
Strategies of Muscular Support of Varus and Valgus Isometric Loads at the Human Knee
,”
J. Biomech.
,
34
(
10
), pp.
1257
1267
.10.1016/S0021-9290(01)00095-1
41.
Spoor
,
C. W.
,
1991
, “
Muscle Moment Arms From Tendon Travel; Concepts and Measurements
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
13
, Orlando, FL, Oct. 31–Nov. 3, pp.
2024
2025
.10.1109/IEMBS.1991.684872
42.
Cardona
,
M.
, and
Cena
,
C. E. G.
,
2019
, “
Biomechanical Analysis of the Lower Limb: A Full-Body Musculoskeletal Model for Muscle-Driven Simulation
,”
IEEE Access
,
7
, pp.
92709
92723
.10.1109/ACCESS.2019.2927515
43.
Barrios
,
J. A.
,
Heitkamp
,
C. A.
,
Smith
,
B. P.
,
Sturgeon
,
M. M.
,
Suckow
,
D. W.
, and
Sutton
,
C. R.
,
2016
, “
Three-Dimensional Hip and Knee Kinematics During Walking, Running, and Single-Limb Drop Landing in Females With and Without Genu Valgum
,”
Clin. Biomech.
,
31
, pp.
7
11
.10.1016/j.clinbiomech.2015.10.008
44.
Powers
,
C. M.
,
2010
, “
The Influence of Abnormal Hip Mechanics on Knee Injury: A Biomechanical Perspective
,”
J. Orthop. Sports Phys. Ther.
,
40
(
2
), pp.
42
51
.10.2519/jospt.2010.3337
45.
Bosmans
,
L.
,
Valente
,
G.
,
Wesseling
,
M.
,
Van Campen
,
A.
,
De Groote
,
F.
,
De Schutter
,
J.
, and
Jonkers
,
I.
,
2015
, “
Sensitivity of Predicted Muscle Forces During Gait to Anatomical Variability in Musculotendon Geometry
,”
J. Biomech.
,
48
(
10
), pp.
2116
2123
.10.1016/j.jbiomech.2015.02.052
46.
Modenese
,
L.
,
Phillips
,
A. T. M.
, and
Bull
,
A. M. J.
,
2011
, “
An Open Source Lower Limb Model: Hip Joint Validation
,”
J. Biomech.
,
44
(
12
), pp.
2185
2193
.10.1016/j.jbiomech.2011.06.019
47.
Wesseling
,
M.
,
De Groote
,
F.
,
Bosmans
,
L.
,
Bartels
,
W.
,
Meyer
,
C.
,
Desloovere
,
K.
, and
Jonkers
,
I.
,
2016
, “
Subject-Specific Geometrical Detail Rather Than Cost Function Formulation Affects Hip Loading Calculation
,”
Comput Methods Biomech. Biomed. Eng.
,
19
(
14
), pp.
1475
1488
.10.1080/10255842.2016.1154547
48.
Klein Horsman
,
M. D.
,
2007
, “
The Twente Lower Extremity Model. Consistent Dynamic Simulation of the Human Locomotor Apparatus
,” Ph.D. thesis—Research, UT, Graduation UT,
University of Twente
, Enschede, The Netherlands.
49.
Valente
,
G.
,
Martelli
,
S.
,
Taddei
,
F.
,
Farinella
,
G.
, and
Viceconti
,
M.
,
2012
, “
Muscle Discretization Affects the Loading Transferred to Bones in Lower-Limb Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
226
(
2
), pp.
161
169
.10.1177/0954411911425863
50.
Catelli
,
D. S.
,
Wesseling
,
M.
,
Jonkers
,
I.
, and
Lamontagne
,
M.
,
2019
, “
A Musculoskeletal Model Customized for Squatting Task
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
1
), pp.
21
24
.10.1080/10255842.2018.1523396
51.
Lai
,
A. K. M.
,
Arnold
,
A. S.
, and
Wakeling
,
J. M.
,
2017
, “
Why Are Antagonist Muscles Co-Activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks
,”
Ann. Biomed. Eng.
,
45
(
12
), pp.
2762
2774
.10.1007/s10439-017-1920-7
You do not currently have access to this content.