Abstract

In this study, a three-stage bio-aerosol sampler with a sampling flow rate of 170 L/min was designed and fabricated for sampling the bio-aerosols released during human breathing and coughing, and its performance was evaluated. The sampler was constructed using a cyclone separator with a cutoff size of 2.5 μm as a preseparator, a multinozzle virtual impactor with a cutoff size of 0.34 μm as an aerosol concentrator, and a Bio-Sampler, which is a commercial product, for collecting bio-aerosols in a collection fluid. The collection efficiency of the sampler was evaluated through simulations and experiments. Only particles with sizes of 0.1–4 μm were selectively collected in the collection fluid. Bacteriophage bio-aerosols were sampled using the developed sampler and ACD-200 Bobcat sampler, which is a commercial product. The amounts of collected bacteriophages were compared using the polymerase chain reaction (PCR) technique. The sampling performance of the developed sampler was similar to that of the ACD-200 Bobcat sampler. Moreover, the developed sampler showed its ability to sample bio-aerosols of a specific size range and collect them directly in a collection fluid for the PCR analysis. Therefore, the developed sampler is expected to be useful for indoor environmental monitoring by effectively sampling the bio-aerosols released indoors during human breathing and coughing.

References

1.
Reponen
,
T.
,
Hyvärinen
,
A.
,
Ruuskanen
,
J.
,
Raunemaa
,
T.
, and
Nevalainen
,
A.
,
1994
, “
Comparison of Concentrations and Size Distributions of Fungal Spores in Buildings With and Without Mould Problems
,”
J. Aerosol Sci.
,
25
(
8
), pp.
1595
1603
.10.1016/0021-8502(94)90227-5
2.
Cole
,
E. C.
, and
Cook
,
C. E.
,
1998
, “
Characterization of Infectious Aerosols in Health Care Facilities: An Aid to Effective Engineering Controls and Preventive Strategies
,”
Am. J. Infect. Control
,
26
(
4
), pp.
453
464
.10.1016/S0196-6553(98)70046-X
3.
Tang
,
J. W.
,
Li
,
Y.
,
Eames
,
I.
,
Chan
,
P. K. S.
, and
Ridgway
,
G. L.
,
2006
, “
Factors Involved in the Aerosol Transmission of Infection and Control of Ventilation in Healthcare Premises
,”
J. Hosp. Infect.
,
64
(
2
), pp.
100
114
.10.1016/j.jhin.2006.05.022
4.
Jones
,
R. M.
, and
Brosseau
,
L. M.
,
2015
, “
Aerosol Transmission of Infectious Disease
,”
J. Occup. Environ. Med.
,
57
(
5
), pp.
501
508
.10.1097/JOM.0000000000000448
5.
Xu
,
C.
,
Wu
,
C. Y.
, and
Yao
,
M.
,
2017
, “
Fluorescent Bioaerosol Particles Resulting From Human Occupancy With and Without Respirators
,”
Aerosol Air Qual. Res.
,
17
(
1
), pp.
198
208
.10.4209/aaqr.2016.09.0400
6.
Górny
,
R. L.
,
Dutkiewicz
,
J.
, and
Krysinska-Traczyk
,
E.
,
1999
, “
Size Distribution of Bacterial and Fungal Bioaerosols in Indoor Air
,”
Ann. Agric. Environ. Med.
,
6
(
2
), pp.
105
113
.http://www.aaem.pl/Sizedistribution-of-bacterial-and-fungal-bioaerosols-in-indoor-air-,72687,0,2.html
7.
Lee
,
H.
, and
Yook
,
S. J.
,
2014
, “
Cyclone Performance on Removing Fibrous Particles Generated From Terry-Towels and Cotton Clothes
,”
Powder Technol.
,
262
, pp.
36
41
.10.1016/j.powtec.2014.04.057
8.
Errington
,
F. P.
, and
Powell
,
E. O.
,
1969
, “
A Cyclone Separator for Aerosol Sampling in the Field
,”
Epidemiol. Infect.
,
67
(
3
), pp.
387
399
.10.1017/S0022172400041802
9.
Sioutas
,
C.
,
Koutrakis
,
P.
, and
Burton
,
R. M.
,
1994
, “
A High-Volume Small Cutpoint Virtual Impactor for Separation of Atmospheric Particulate From Gaseous Pollutants
,”
Particul. Sci. Technol.
,
12
(
3
), pp.
207
221
.10.1080/02726359408906651
10.
Gautam
,
M.
, and
Sreenath
,
A.
,
1997
, “
A Performance of a Respirable Multi-Inlet Cyclone Sampler
,”
J. Aerosol Sci.
,
28
(
7
), pp.
1265
1281
.10.1016/S0021-8502(96)00472-7
11.
Lindsley
,
W. G.
,
Schmechel
,
D.
, and
Chen
,
B. T.
,
2006
, “
A Two-Stage Cyclone Using Microcentrifuge Tubes for Personal Bioaerosol Sampling
,”
J. Environ. Monit.
,
8
(
11
), pp.
1136
1142
.10.1039/b609083d
12.
Andersen
,
A. A.
,
1958
, “
New Sampler for the Collection, Sizing, and Enumeration of Viable Airborne Particles
,”
J. Bacteriol.
,
76
(
5
), pp.
471
484
.10.1128/jb.76.5.471-484.1958
13.
Decker
,
H. M.
, and
Wilson
,
M. E.
,
1954
, “
A Slit Sampler for Collecting Air-Borne Microorganisms
,”
Appl. Microbiol.
,
2
(
5
), pp.
267
269
.10.1128/am.2.5.267-269.1954
14.
Lim
,
J. H.
,
Park
,
D.
, and
Yook
,
S. J.
,
2020
, “
Development of a Multi-Slit Virtual Impactor as a High-Volume Bio-Aerosol Sampler
,”
Sep. Purif. Technol.
,
250
, p.
117275
.10.1016/j.seppur.2020.117275
15.
Terzieva
,
S.
,
Donnelly
,
J.
,
Ulevicius
,
V.
,
Grinshpun
,
S. A.
,
Willeke
,
K.
,
Stelma
,
G. N.
, and
Brenner
,
K. P.
,
1996
, “
Comparison of Methods for Detection and Enumeration of Airborne Microorganisms Collected by Liquid Impingement
,”
Appl. Environ. Microbiol.
,
62
(
7
), pp.
2264
2272
.10.1128/aem.62.7.2264-2272.1996
16.
Willeke
,
K.
,
Lin
,
X.
, and
Grinshpun
,
S. A.
,
1998
, “
Improved Aerosol Collection by Combined Impaction and Centrifugal Motion
,”
Aerosol Sci. Technol.
,
28
(
5
), pp.
439
456
.10.1080/02786829808965536
17.
Lin
,
X.
,
Reponen
,
T.
,
Willeke
,
K.
,
Wang
,
Z.
,
Grinshpun
,
S. A.
, and
Trunov
,
M.
,
2000
, “
Survival of Airborne Microorganisms During Swirling Aerosol Collection
,”
Aerosol Sci. Technol.
,
32
(
3
), pp.
184
196
.10.1080/027868200303722
18.
John
,
W.
, and
Reischl
,
G.
,
1980
, “
A Cyclone for Size-Selective Sampling of Ambient Air
,”
J. Air Pollut. Control Assoc.
,
30
(
8
), pp.
872
876
.10.1080/00022470.1980.10465122
19.
Smith
,
W. B.
,
Wilson
,
R. R.
, and
Harris
,
D. B.
,
1979
, “
A Five-Stage Cyclone System for in Situ Sampling
,”
Environ. Sci. Technol.
,
13
(
11
), pp.
1387
1392
.10.1021/es60159a016
20.
May
,
K. R.
,
1966
, “
Multistage Liquid Impinge
,”
Bacteriol. Rev.
,
30
(
3
), pp.
559
570
.10.1128/br.30.3.559-570.1966
21.
Bergman
,
W.
,
Shinn
,
J.
,
Lochner
,
R.
,
Sawyer
,
S.
,
Milanovich
,
F.
, and
Mariella
,
R.
,
2005
, “
High Air Flow, Low Pressure Drop, Bio-Aerosol Collector Using a Multi-Slit Virtual Impactor
,”
J. Aerosol Sci.
,
36
(
5–6
), pp.
619
638
.10.1016/j.jaerosci.2004.12.010
22.
Han
,
Z. Y.
,
Weng
,
W. G.
, and
Huang
,
Q. Y.
,
2013
, “
Characterizations of Particle Size Distribution of the Droplets Exhaled by Sneeze
,”
J. R. Soc. Interface
,
10
(
88
), p.
20130560
.10.1098/rsif.2013.0560
23.
ISO,
1995
, “
Air Quality—Particle Size Fraction Definitions for Health-Related Sampling,
” ISO, Geneva, Switzerland, Standard No.
ISO 7708
.https://www.iso.org/standard/14534.html
24.
Kaya
,
F.
, and
Karagoz
,
I.
,
2008
, “
Performance Analysis of Numerical Schemes in Highly Swirling Turbulent Flows in Cyclones
,”
Curr. Sci.
,
94
(
10
), pp.
1273
1278
.https://www.jstor.org/stable/24100235
25.
Shukla
,
S. K.
,
Shukla
,
P.
, and
Ghosh
,
P.
,
2011
, “
Evaluation of Numerical Schemes Using Different Simulation Methods for the Continuous Phase Modeling of Cyclone Separators
,”
Adv. Powder Technol.
,
22
(
2
), pp.
209
219
.10.1016/j.apt.2010.11.009
26.
Hogan
,
C. J.
,
Kettleson
,
E. M.
,
Lee
,
M. H.
,
Ramaswami
,
B.
,
Angenent
,
L. T.
, and
Biswas
,
P.
,
2005
, “
Sampling Methodologies and Dosage Assessment Techniques for Submicrometre and Ultrafine Virus Aerosol Particles
,”
J. Appl. Microbiol.
,
99
(
6
), pp.
1422
1434
.10.1111/j.1365-2672.2005.02720.x
You do not currently have access to this content.