Abstract

Delayed long bone fracture healing and nonunion continue to be a significant socioeconomic burden. While mechanical stimulation is known to be an important determinant of the bone repair process, understanding how the magnitude, mode, and commencement of interfragmentary strain (IFS) affect fracture healing can guide new therapeutic strategies to prevent delayed healing or nonunion. Mouse models provide a means to investigate the molecular and cellular aspects of fracture repair, yet there is only one commercially available, clinically-relevant, locking intramedullary nail (IMN) currently available for studying long bone fractures in rodents. Having access to alternative IMNs would allow a variety of mechanical environments at the fracture site to be evaluated, and the purpose of this proof-of-concept finite element analysis study is to identify which IMN design parameters have the largest impact on IFS in a murine transverse femoral osteotomy model. Using the dimensions of the clinically relevant IMN as a guide, the nail material, distance between interlocking screws, and clearance between the nail and endosteal surface were varied between simulations. Of these parameters, changing the nail material from stainless steel (SS) to polyetheretherketone (PEEK) had the largest impact on IFS. Reducing the distance between the proximal and distal interlocking screws substantially affected IFS only when nail modulus was low. Therefore, IMNs with low modulus (e.g., PEEK) can be used alongside commercially available SS nails to investigate the effect of initial IFS or stability on fracture healing with respect to different biological conditions of repair in rodents.

References

1.
Watkins-Castillo
,
S.
, and
Andersson
,
G.
,
2014
,
The Burden of Musculoskeletal Diseases in the United States (BMUS)
,
3
rd ed., United States Bone and Joint Initiative, Lombard, IL.
2.
Hak
,
D. J.
,
Fitzpatrick
,
D.
,
Bishop
,
J. A.
,
Marsh
,
J. L.
,
Tilp
,
S.
,
Schnettler
,
R.
,
Simpson
,
H.
, and
Alt
,
V.
,
2014
, “
Delayed Union and Nonunions: Epidemiology, Clinical Issues, and Financial Aspects
,”
Injury
,
45
(
Suppl. 2
), pp.
S3
S7
.10.1016/j.injury.2014.04.002
3.
Mills
,
L. A.
,
Aitken
,
S. A.
, and
Simpson
,
A. H. R. W.
,
2017
, “
The Risk of Non-Union per Fracture: Current Myths and Revised Figures From a Population of Over 4 Million Adults
,”
Acta Orthop.
,
88
(
4
), pp.
434
439
.10.1080/17453674.2017.1321351
4.
Zura
,
R.
,
Xiong
,
Z.
,
Einhorn
,
T.
,
Watson
,
J. T.
,
Ostrum
,
R. F.
,
Prayson
,
M. J.
,
Della Rocca
,
G. J.
,
Mehta
,
S.
,
McKinley
,
T.
,
Wang
,
Z.
, and
Steen
,
R. G.
,
2016
, “
Epidemiology of Fracture Nonunion in 18 Human Bones
,”
JAMA Surg.
,
151
(
11
), p.
e162775
.10.1001/jamasurg.2016.2775
5.
Claes
,
L.
,
Recknagel
,
S.
, and
Ignatius
,
A.
,
2012
, “
Fracture Healing Under Healthy and Inflammatory Conditions
,”
Nat. Rev. Rheumatol.
,
8
(
3
), pp.
133
143
.10.1038/nrrheum.2012.1
6.
Gaston
,
M. S.
, and
Simpson
,
A. H. R. W.
,
2007
, “
Inhibition of Fracture Healing
,”
J. Bone Jt. Surg. - Ser. B
,
89-B
(
12
), pp.
1553
1560
.10.1302/0301-620X.89B12.19671
7.
Haffner-Luntzer
,
M.
,
Liedert
,
A.
, and
Ignatius
,
A.
,
2016
, “
Mechanobiology of Bone Remodeling and Fracture Healing in the Aged Organism
,”
Innov. Surg. Sci.
,
1
(
2
), pp.
57
63
.10.1515/iss-2016-2021
8.
Bhandari
,
M.
,
Tornetta
,
P.
,
Sprague
,
S.
,
Najibi
,
S.
,
Petrisor
,
B.
,
Griffith
,
L.
, and
Guyatt
,
G. H.
,
2003
, “
Predictors of Reoperation Following Operative Management of Fractures of the Tibial Shaft
,”
J. Orthop. Trauma
,
17
(
5
), pp.
353
361
.10.1097/00005131-200305000-00006
9.
Elliott
,
D. S.
,
Newman
,
K. J. H.
,
Forward
,
D. P.
,
Hahn
,
D. M.
,
Ollivere
,
B.
,
Kojima
,
K.
,
Handley
,
R.
,
Rossiter
,
N. D.
,
Wixted
,
J. J.
,
Smith
,
R. M.
, and
Moran
,
C. G.
,
2016
, “
A Unified Theory of Bone Healing and Nonunion
,”
Bone Jt. J.
,
98-B
(
7
), pp.
884
891
.10.1302/0301-620X.98B7.36061
10.
Perren
,
S. M.
,
Fernandez
,
A.
, and
Regazzoni
,
P.
,
2015
, “
Understanding Fracture Healing Biomechanics Based on the ‘Strain’ Concept and Its Clinical Applications
,”
Acta Chir. Orthop. Traumatol. Cech.
, 82(4), pp.
253
260
.https://pubmed.ncbi.nlm.nih.gov/26516728/
11.
Kostenuik
,
P.
, and
Mirza
,
F. M.
,
2017
, “
Fracture Healing Physiology and the Quest for Therapies for Delayed Healing and Nonunion
,”
J. Orthop. Res.
,
35
(
2
), pp.
213
223
.10.1002/jor.23460
12.
Thompson
,
E. M.
,
Matsiko
,
A.
,
Kelly
,
D. J.
,
Gleeson
,
J. P.
, and
O'Brien
,
F. J.
,
2016
, “
An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo
,”
Tissue Eng. Part A
,
22
(
5–6
), pp.
556
567
.10.1089/ten.tea.2015.0457
13.
Wang
,
W.
, and
Yeung
,
K. W. K.
,
2017
, “
Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review
,”
Bioact. Mater.
,
2
(
4
), pp.
224
247
.10.1016/j.bioactmat.2017.05.007
14.
Epari
,
D. R.
,
Wehner
,
T.
,
Ignatius
,
A.
,
Schuetz
,
M. A.
, and
Claes
,
L. E.
,
2013
, “
A Case for Optimising Fracture Healing Through Inverse Dynamization
,”
Med. Hypotheses
,
81
(
2
), pp.
225
227
.10.1016/j.mehy.2013.04.044
15.
Ferreira
,
N.
,
Marais
,
L. C.
, and
Aldous
,
C.
,
2015
, “
Mechanobiology in the Management of Mobile Atrophic and Oligotrophic Tibial Nonunions
,”
J. Orthop.
,
12
, pp.
S182
S187
.10.1016/j.jor.2015.10.012
16.
Glatt
,
V.
,
Evans
,
C. H.
, and
Tetsworth
,
K.
,
2017
, “
A Concert Between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing
,”
Front. Physiol.
,
7
(
Jan
), pp.
1
18
.10.3389/fphys.2016.00678
17.
Beltran
,
M. J.
,
Collinge
,
C. A.
, and
Gardner
,
M. J.
,
2016
, “
Stress Modulation of Fracture Fixation Implants
,”
J. Am. Acad. Orthop. Surg.
,
24
(
10
), pp.
711
719
.10.5435/JAAOS-D-15-00175
18.
Kubiak
,
E. N.
,
Beebe
,
M. J.
,
North
,
K.
,
Hitchcock
,
R.
, and
Potter
,
M. Q.
,
2013
, “
Early Weight Bearing After Lower Extremity Fractures in Adults
,”
J. Am. Acad. Orthop. Surg.
,
21
(
12
), pp.
727
738
.10.5435/00124635-201312000-00003
19.
Wood
,
G. W.
,
2006
, “
Intramedullary Nailing of Femoral and Tibial Shaft Fractures
,”
J. Orthopaedic Sci.
,
11
(
6
), pp.
657
669
.10.1007/s00776-006-1061-6
20.
Rosa
,
N.
,
Marta
,
M.
,
Vaz
,
M.
,
Tavares
,
S. M. O.
,
Simoes
,
R.
,
Magalhães
,
F. D.
, and
Marques
,
A. T.
,
2019
, “
Intramedullary Nailing Biomechanics: Evolution and Challenges
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
233
(
3
), pp.
295
308
.10.1177/0954411919827044
21.
Betts
,
D. C.
, and
MüLler
,
R.
,
2014
, “
Mechanical Regulation of Bone Regeneration: Theories, Models, and Experiments
,”
Front. Endocrinol. (Lausanne)
,
5
(
Dec
), pp.
1
14
.10.3389/fendo.2014.00211
22.
Hente
,
R.
, and
Perren
,
S. M.
,
2019
, “
Mechanical Stimulation of Fracture Healing – Stimulation of Callus by Improved Recovery
,” 85(
6
), pp.
385
391
.http://www.achot.cz/dwnld/achot_2018_6_385_391.pdf
23.
Yuasa
,
M.
,
Saito
,
M.
,
Blum
,
D. M.
,
Hysong
,
A. A.
,
Egawa
,
S.
,
Uppuganti
,
S.
,
Yoshii
,
T.
,
Okawa
,
A.
,
Schwartz
,
H. S.
,
Moore-Lotridge
,
S. N.
,
Nyman
,
J. S.
, and
Schoenecker
,
J. G.
,
2019
, “
The Size of Intramedullary Fixation Affects Endochondral-Mediated Angiogenesis During Fracture Repair
,”
J. Orthop. Trauma
,
33
(
10
), pp.
e385
e393
.10.1097/BOT.0000000000001555
24.
Dallas
,
S. L.
,
Xie
,
Y.
,
Shiflett
,
L. A.
, and
Ueki
,
Y.
,
2018
, “
Mouse Cre Models for the Study of Bone Diseases
,”
Curr. Osteoporos. Rep.
,
16
(
4
), pp.
466
477
.10.1007/s11914-018-0455-7
25.
Elefteriou
,
F.
, and
Yang
,
X.
,
2011
, “
Genetic Mouse Models for Bone Studies-Strengths and Limitations
,”
Bone
,
49
(
6
), pp.
1242
1254
.10.1016/j.bone.2011.08.021
26.
Garcia
,
P.
,
Histing
,
T.
,
Holstein
,
J. H.
,
Klein
,
M.
,
Laschke
,
M. W.
,
Matthys
,
R.
,
Ignatius
,
A.
,
2013
, “
Rodent Animal Models of Delayed Bone Healing and Non-Union Formation: A Comprehensive Review
,”
Eur. Cells Mater.
,
26
, pp.
1
14
.10.22203/eCM.v026a01
27.
Histing
,
T.
,
Garcia
,
P.
,
Holstein
,
J. H.
,
Klein
,
M.
,
Matthys
,
R.
,
Nuetzi
,
R.
,
Steck
,
R.
,
2011
, “
Small Animal Bone Healing Models: Standards, Tips, and Pitfalls Results of a Consensus Meeting
,”
Bone
,
49
(
4
), pp.
591
599
.10.1016/j.bone.2011.07.007
28.
Haffner-Luntzer
,
M.
,
Kovtun
,
A.
,
Rapp
,
A. E.
, and
Ignatius
,
A.
,
2016
, “
Mouse Models in Bone Fracture Healing Research
,”
Curr. Mol. Biol. Rep.
,
2
(
2
), pp.
101
111
.10.1007/s40610-016-0037-3
29.
Yuasa
,
M.
,
Mignemi
,
N. A.
,
Barnett
,
J. V.
,
Cates
,
J. M. M.
,
Nyman
,
J. S.
,
Okawa
,
A.
,
Yoshii
,
T.
,
Schwartz
,
H. S.
,
Stutz
,
C. M.
, and
Schoenecker
,
J. G.
,
2014
, “
The Temporal and Spatial Development of Vascularity in a Healing Displaced Fracture
,”
Bone
,
67
, pp.
208
221
.10.1016/j.bone.2014.07.002
30.
Histing
,
T.
,
Garcia
,
P.
,
Matthys
,
R.
,
Leidinger
,
M.
,
Holstein
,
J. H.
,
Kristen
,
A.
,
Pohlemann
,
T.
, and
Menger
,
M. D.
,
2010
, “
An Internal Locking Plate to Study Intramembranous Bone Healing in a Mouse Femur Fracture Model
,”
J. Orthop. Res.
,
28
(
3
), pp.
397
402
.10.1002/jor.21008
31.
Röntgen
,
V.
,
Blakytny
,
R.
,
Matthys
,
R.
,
Landauer
,
M.
,
Wehner
,
T.
,
Göckelmann
,
M.
,
Jermendy
,
P.
,
Amling
,
M.
,
Schinke
,
T.
,
Claes
,
L.
, and
Ignatius
,
A.
,
2010
, “
Fracture Healing in Mice Under Controlled Rigid and Flexible Conditions Using an Adjustable External Fixator
,”
J. Orthop. Res.
,
28
(
11
), pp.
1456
1462
.10.1002/jor.21148
32.
Bartnikowski
,
N.
,
Claes
,
L. E.
,
Koval
,
L.
,
Glatt
,
V.
,
Bindl
,
R.
,
Steck
,
R.
,
Ignatius
,
A.
,
Schuetz
,
M. A.
, and
Epari
,
D. R.
,
2017
, “
Modulation of Fixation Stiffness From Flexible to Stiff in a Rat Model of Bone Healing
,”
Acta Orthop.
,
88
(
2
), pp.
217
222
.10.1080/17453674.2016.1256940
33.
Garcia
,
P.
,
Herwerth
,
S.
,
Matthys
,
R.
,
Holstein
,
J. H.
,
Histing
,
T.
,
Menger
,
M. D.
, and
Pohlemann
,
T.
,
2011
, “
The LockingMouseNail—a New Implant for Standardized Stable Osteosynthesis in Mice
,”
J. Surg. Res.
,
169
(
2
), pp.
220
226
.10.1016/j.jss.2009.11.713
34.
Histing
,
T.
,
Menger
,
M. D.
,
Pohlemann
,
T.
,
Matthys
,
R.
,
Fritz
,
T.
,
Garcia
,
P.
, and
Klein
,
M.
,
2016
, “
An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice
,”
J. Vis. Exp.,
2016
(
117
), p. 54472.10.3791/54472
35.
Ghiasi
,
M. S.
,
Chen
,
J. E.
,
Rodriguez
,
E. K.
,
Vaziri
,
A.
, and
Nazarian
,
A.
,
2019
, “
Computational Modeling of Human Bone Fracture Healing Affected by Different Conditions of Initial Healing Stage
,”
BMC Musculoskelet. Disord.
,
20
(
1
), p.
562
.10.1186/s12891-019-2854-z
36.
Mehboob
,
A.
, and
Chang
,
S. H.
,
2019
, “
Effect of Initial Micro-Movement of a Fracture Gap Fastened by Composite Prosthesis on Bone Healing
,”
Compos. Struct.
,
226
(
April
), p.
111213
.10.1016/j.compstruct.2019.111213
37.
OReilly
,
A.
,
Hankenson
,
K. D.
, and
Kelly
,
D. J.
,
2016
, “
A Computational Model to Explore the Role of Angiogenic Impairment on Endochondral Ossification During Fracture Healing
,”
Biomech. Model. Mechanobiol.
,
15
(
5
), pp.
1279
1294
.10.1007/s10237-016-0759-4
38.
Wilson
,
C. J.
,
Schütz
,
M. A.
, and
Epari
,
D. R.
,
2017
, “
Computational Simulation of Bone Fracture Healing Under Inverse Dynamisation
,”
Biomech. Model. Mechanobiol.
,
16
(
1
), pp.
5
14
.10.1007/s10237-016-0798-x
39.
Cui
,
Y.
,
Xing
,
W.
,
Pan
,
Z.
,
Kong
,
Z.
,
Sun
,
L.
,
Sun
,
L.
,
Cheng
,
X.
, and
Liu
,
C.
,
2020
, “
Characterization of Novel Intramedullary Nailing Method for Treating Femoral Shaft Fracture Through Finite Element Analysis
,”
Exp. Ther. Med.
, 20(2), pp.
748
753
.10.3892/etm.2020.8763
40.
Rodrigues
,
L. B.
,
Las Casas
,
E. B.
,
Lopes
,
D. S.
,
Folgado
,
J.
,
Fernandes
,
P. R.
,
Pires
,
E. A. C. B.
,
Alves
,
G. E. S.
, and
Faleiros
,
R. R.
,
2012
, “
A Finite Element Model to Simulate Femoral Fractures in Calves: Testing Different Polymers for Intramedullary Interlocking Nails
,”
Vet. Surg.
, 41(7), pp.
838
844
.10.1111/j.1532-950X.2012.01032.x
41.
Samiezadeh
,
S.
,
Avval
,
P. T.
,
Fawaz
,
Z.
, and
Bougherara
,
H.
,
2014
, “
Biomechanical Assessment of Composite Versus Metallic Intramedullary Nailing System in Femoral Shaft Fractures: A Finite Element Study
,”
Clin. Biomech.
, 29(7), pp.
803
810
.10.1016/j.clinbiomech.2014.05.010
42.
Tucker
,
S. M.
,
Wee
,
H.
,
Fox
,
E.
,
Reid
,
J. S.
, and
Lewis
,
G. S.
,
2019
, “
Parametric Finite Element Analysis of Intramedullary Nail Fixation of Proximal Femur Fractures
,”
J. Orthop. Res.
,
37
(
11
), pp.
2358
2366
.10.1002/jor.24401
43.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
MeshLab: An Open-Source Mesh Processing Tool
,”
6th Eurographics Italian Chapter Conference 2008 - Proceedings,
Salerno, Italy, July 2–4, pp.
129
136
.10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
44.
Kazhdan
,
M.
, and
Hoppe
,
H.
,
2013
, “
Screened Poisson Surface Reconstruction
,”
ACM Trans. Graph.
,
32
(
3
), pp.
1
13
.10.1145/2487228.2487237
45.
Adam
,
A.
,
2020
, “
STL to ACIS SAT Conversion
,” MATLAB Central File Exchange, accessed Dec. 4, 2021, https://in.mathworks.com/matlabcentral/fileexchange/27174-stl-to-acis-sat-conversion
46.
Histing
,
T.
,
Bremer
,
P.
,
Rollmann
,
M. F.
,
Herath
,
S.
,
Klein
,
M.
,
Pohlemann
,
T.
,
Menger
,
M. D.
, and
Fritz
,
T.
,
2018
, “
A Minimally Invasive Model to Analyze Endochondral Fracture Healing in Mice Under Standardized Biomechanical Conditions
,”
J. Vis. Exp.
,
2018
(
133
), pp.
1
7
.10.3791/57255
47.
El Halabi
,
F.
,
Rodriguez
,
J. F.
,
Rebolledo
,
L.
,
Hurtós
,
E.
, and
Doblaré
,
M.
,
2011
, “
Mechanical Characterization and Numerical Simulation of Polyether-Ether-Ketone (PEEK) Cranial Implants
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1819
1832
.10.1016/j.jmbbm.2011.05.039
48.
Wehner
,
T.
,
Steiner
,
M.
,
Ignatius
,
A.
,
Claes
,
L.
, and
Aegerter
,
C. M.
,
2014
, “
Prediction of the Time Course of Callus Stiffness as a Function of Mechanical Parameters in Experimental Rat Fracture Healing Studies - A Numerical Study
,”
PLoS One
,
9
(
12
), p.
e115695
.10.1371/journal.pone.0115695
49.
Yang
,
H.
,
Butz
,
K. D.
,
Duffy
,
D.
,
Niebur
,
G. L.
,
Nauman
,
E. A.
, and
Main
,
R. P.
,
2014
, “
Characterization of Cancellous and Cortical Bone Strain in the In Vivo Mouse Tibial Loading Model Using MicroCT-Based Finite Element Analysis
,”
Bone
,
66
, pp.
131
139
.10.1016/j.bone.2014.05.019
50.
Simon
,
U.
,
Augat
,
P.
,
Ignatius
,
A.
, and
Claes
,
L.
,
2003
, “
Influence of the Stiffness of Bone Defect Implants on the Mechanical Conditions at the Interface - A Finite Element Analysis With Contact
,”
J. Biomech.
,
36
(
8
), pp.
1079
1086
.10.1016/S0021-9290(03)00114-3
51.
Wehner
,
T.
,
Penzkofer
,
R.
,
Augat
,
P.
,
Claes
,
L.
, and
Simon
,
U.
,
2011
, “
Improvement of the Shear Fixation Stability of Intramedullary Nailing
,”
Clin. Biomech.
,
26
(
2
), pp.
147
151
.10.1016/j.clinbiomech.2010.09.009
52.
Beaucage
,
K. L.
,
Pollmann
,
S. I.
,
Sims
,
S. M.
,
Dixon
,
S. J.
, and
Holdsworth
,
D. W.
,
2016
, “
Quantitative In Vivo Micro-Computed Tomography for Assessment of Age-Dependent Changes in Murine Whole-Body Composition
,”
Bone Rep.
,
5
, pp.
70
80
.10.1016/j.bonr.2016.04.002
53.
Borgiani
,
E.
,
Duda
,
G.
,
Willie
,
B.
, and
Checa
,
S.
,
2015
, “
Bone Healing in Mice: Does It Follow Generic Mechano-Regulation Rules?
,”
Facta Univ. Ser. Mech. Eng.,
13
(
3
), pp.
217
227
.http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/1395
54.
Checa
,
S.
,
Prendergast
,
P. J.
, and
Duda
,
G. N.
,
2011
, “
Inter-Species Investigation of the Mechano-Regulation of Bone Healing: Comparison of Secondary Bone Healing in Sheep and Rat
,”
J. Biomech.
,
44
(
7
), pp.
1237
1245
.10.1016/j.jbiomech.2011.02.074
55.
Wehner
,
T.
,
Wolfram
,
U.
,
Henzler
,
T.
,
Niemeyer
,
F.
,
Claes
,
L.
, and
Simon
,
U.
,
2010
, “
Internal Forces and Moments in the Femur of the Rat During Gait
,”
J. Biomech.
,
43
(
13
), pp.
2473
2479
.10.1016/j.jbiomech.2010.05.028
56.
Morgan
,
E. F.
,
Salisbury Palomares
,
K. T.
,
Gleason
,
R. E.
,
Bellin
,
D. L.
,
Chien
,
K. B.
,
Unnikrishnan
,
G. U.
, and
Leong
,
P. L.
,
2010
, “
Correlations Between Local Strains and Tissue Phenotypes in an Experimental Model of Skeletal Healing
,”
J. Biomech.
,
43
(
12
), pp.
2418
2424
.10.1016/j.jbiomech.2010.04.019
57.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2006
, “
Average Shear Stress Yield Criterion and Its Application to Plastic Collapse Analysis of Pipelines
,”
Int, J. Press Vessel. Pip.
, 83(9), pp.
663
671
.10.1016/j.ijpvp.2006.06.001
58.
Sacchetti
,
F.
,
Andreani
,
L.
,
Palazzuolo
,
M.
,
Cherix
,
S.
,
Bonicoli
,
E.
,
Neri
,
E.
, and
Capanna
,
R.
,
2020
, “
Carbon/PEEK Nails: A Case–Control Study of 22 Cases
,”
Eur. J. Orthop. Surg. Traumatol.
,
30
(
4
), pp.
643
651
.10.1007/s00590-019-02602-4
59.
Takashima
,
K.
,
Nakahara
,
I.
,
Uemura
,
K.
,
Hamada
,
H.
,
Ando
,
W.
,
Takao
,
M.
, and
Sugano
,
N.
,
2020
, “
Clinical Outcomes of Proximal Femoral Fractures Treated With a Novel Carbon Fiber-Reinforced Polyetheretherketone Intramedullary Nail
,”
Injury
,
51
(
3
), pp.
678
682
.10.1016/j.injury.2020.01.007
60.
Ziran
,
B. H.
,
O'Pry
,
E. K.
, and
Harris
,
R. M.
,
2020
, “
Carbon Fiber-Reinforced PEEK versus Titanium Tibial Intramedullary Nailing: A Preliminary Analysis and Results
,”
J. Orthop. Trauma
,
34
(
8
), pp.
429
433
.10.1097/BOT.0000000000001756
61.
Baker
,
C. E.
,
Moore-Lotridge
,
S. N.
,
Hysong
,
A. A.
,
Posey
,
S. L.
,
Robinette
,
J. P.
,
Blum
,
D. M.
,
Benvenuti
,
M. A.
,
Cole
,
H. A.
,
Egawa
,
S.
,
Okawa
,
A.
,
Saito
,
M.
,
McCarthy
,
J. R.
,
Nyman
,
J. S.
,
Yuasa
,
M.
, and
Schoenecker
,
J. G.
,
2018
, “
Bone Fracture Acute Phase Response—a Unifying Theory of Fracture Repair: Clinical and Scientific Implications
,”
Clin. Rev. Bone Miner. Metab.
,
16
(
4
), pp.
142
158
.10.1007/s12018-018-9256-x
62.
Perren
,
S. M.
,
1979
, “
Physical and Biological Aspects of Fracture Healing With Special Reference to Internal Fixation
,”
Clin. Orthop. Relat. Res.
,
138
(
NO
), pp.
175
196
.https://journals.lww.com/clinorthop/Citation/1979/01000/Physical_and_Biological_Aspects_of_Fracture.27.aspx
63.
Harwood
,
P. J.
, and
Stewart
,
T. D.
,
2016
, “
Mechanics of Musculoskeletal Repair Devices
,”
Orthop. Trauma
,
30
(
2
), pp.
192
200
.10.1016/j.mporth.2016.04.008
64.
Augat
,
P.
,
Penzkofer
,
R.
,
Nolte
,
A.
,
Maier
,
M.
,
Panzer
,
S.
,
Oldenburg
,
G. V.
,
Pueschl
,
K.
,
Simon
,
U.
, and
Bühren
,
V.
,
2008
, “
Interfragmentary Movement in Diaphyseal Tibia Fractures Fixed With Locked Intramedullary Nails
,”
J. Orthop. Trauma
,
22
(
1
), pp.
30
36
.10.1097/BOT.0b013e31816073cb
65.
Wehner
,
T.
,
Claes
,
L.
,
Ignatius
,
A.
, and
Simon
,
U.
,
2012
, “
Optimization of Intramedullary Nailing by Numerical Simulation of Fracture Healing
,”
J. Orthop. Res.
,
30
(
4
), pp.
569
573
.10.1002/jor.21568
66.
Augat
,
P.
,
Burger
,
J.
,
Schorlemmer
,
S.
,
Henke
,
T.
,
Peraus
,
M.
, and
Claes
,
L.
,
2003
, “
Shear Movement at the Fracture Site Delays Healing in a Diaphyseal Fracture Model
,”
J. Orthop. Res.
,
21
(
6
), p.
1011
.10.1016/S0736-0266(03)00098-6
67.
Schell
,
H.
,
Epari
,
D. R.
,
Kassi
,
J. P.
,
Bragulla
,
H.
,
Bail
,
H. J.
, and
Duda
,
G. N.
,
2005
, “
The Course of Bone Healing is Influenced by the Initial Shear Fixation Stability
,”
J. Orthop. Res.
,
23
(
5
), pp.
1022
1028
.10.1016/j.orthres.2005.03.005
68.
Bishop
,
N. E.
,
van Rhijn
,
M.
,
Tami
,
I.
,
Corveleijn
,
R.
,
Schneider
,
E.
, and
Ito
,
K.
,
2006
, “
Shear Does Not Necessarily Inhibit Bone Healing
,”
Clin. Orthop. Relat. Res.
,
443
, pp.
307
314
.10.1097/01.blo.0000191272.34786.09
69.
Park
,
S. H.
,
O'Connor
,
K.
,
Mckellop
,
H.
, and
Sarmiento
,
A.
,
1998
, “
The Influence of Active Shear or Compressive Motion on Fracture-Healing
,”
J. Bone Jt. Surg. - Ser. A
,
80
(
6
), pp.
868
878
.10.2106/00004623-199806000-00011
70.
Bhat
,
A. K.
,
Rao
,
S. K.
, and
Bhaskaranand
,
K.
,
2006
, “
Mechanical Failure in Intramedullary Interlocking Nails
,”
J. Orthop. Surg. (Hong Kong)
, 14(2), pp.
138
141
.10.1177/230949900601400206
71.
Ramakrishna
,
S.
,
Mayer
,
J.
,
Wintermantel
,
E.
, and
Leong
,
K. W.
,
2001
, “
Biomedical Applications of Polymer-Composite Materials: A Review
,”
Compos. Sci. Technol.
, 61(9), pp.
1189
1224
.10.1016/S0266-3538(00)00241-4
72.
Wang
,
C.
,
Li
,
X.
,
Chen
,
W.
,
Wang
,
C.
,
Guo
,
Y.
, and
Guo
,
H.
,
2021
, “
Three-Dimensional Finite Element Analysis of Intramedullary Nail With Different Materials in the Treatment of Intertrochanteric Fractures
,”
Injury
,
52
(
4
), pp.
705
712
.10.1016/j.injury.2020.10.102
73.
Bong
,
M. R.
,
Kummer
,
F. J.
,
Koval
,
K. J.
, and
Egol
,
K. A.
,
2007
, “
Intramedullary Nailing of the Lower Extremity: Biomechanics and Biology
,”
J. Am. Acad. Orthop. Surg.
,
15
(
2
), pp.
97
106
.10.5435/00124635-200702000-00004
74.
Heijink
,
A.
,
Zobitz
,
M. E.
,
Nuyts
,
R.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
2008
, “
Prosthesis Design and Stress Profile After Hip Resurfacing: A Finite Element Analysis
,”
J. Orthop. Surg.
,
16
(
3
), pp.
326
332
.10.1177/230949900801600312
75.
Rohlmann
,
A.
,
Mössner
,
U.
,
Bergmann
,
G.
, and
Kölbel
,
R.
,
1982
, “
Finite-Element-Analysis and Experimental Investigation of Stresses in a Femur
,”
J. Biomed. Eng.
,
4
(
3
), pp.
241
246
.10.1016/0141-5425(82)90009-7
76.
Seker
,
A.
,
Baysal
,
G.
,
Bilsel
,
N.
, and
Yalcin
,
S.
,
2020
, “
Should Early Weightbearing Be Allowed After Intramedullary Fixation of Trochanteric Femur Fractures? A Finite Element Study
,”
J. Orthop. Sci.
,
25
(
1
), pp.
132
138
.10.1016/j.jos.2019.02.011
77.
Stolk
,
J.
,
Verdonschot
,
N.
, and
Huiskes
,
R.
,
2001
, “
Hip-Joint and Abductor-Muscle Forces Adequately Represent In Vivo Loading of a Cemented Total Hip Reconstruction
,”
J. Biomech.
,
34
(
7
), pp.
917
926
.10.1016/S0021-9290(00)00225-6
78.
Werner
,
C.
, and
Gorla
,
R. S. R.
,
2013
, “
Probabilistic Study of Bone Remodeling Using Finite Element Analysis
,”
IJAME
,
18
(
3
), pp.
911
921
.10.2478/ijame-2013-0055
79.
Eberle
,
S.
,
Gerber
,
C.
,
Von Oldenburg
,
G.
,
Hungerer
,
S.
, and
Augat
,
P.
,
2009
, “
Type of Hip Fracture Determines Load Share in Intramedullary Osteosynthesis
,”
Clin. Orthop. Relat. Res.
,
467
(
8
), pp.
1972
1980
.10.1007/s11999-009-0800-3
80.
Goffin
,
J. M.
,
Pankaj
,
P.
, and
Simpson
,
A. H.
,
2014
, “
A Computational Study on the Effect of Fracture Intrusion Distance in Three- and Four-Part Trochanteric Fractures Treated With Gamma Nail and Sliding Hip Screw
,”
J. Orthop. Res.
,
32
(
1
), pp.
39
45
.10.1002/jor.22469
81.
Prasad
,
J.
,
Wiater
,
B. P.
,
Nork
,
S. E.
,
Bain
,
S. D.
, and
Gross
,
T. S.
,
2010
, “
Characterizing Gait Induced Normal Strains in a Murine Tibia Cortical Bone Defect Model
,”
J. Biomech.
,
43
(
14
), pp.
2765
2770
.10.1016/j.jbiomech.2010.06.030
82.
Song
,
H.
,
Polk
,
J. D.
, and
Kersh
,
M. E.
,
2019
, “
Rat Bone Properties and Their Relationship to Gait During Growth
,”
J. Exp. Biol.
, 222(18), p. jeb203554.10.1242/jeb.203554
83.
Erdemir
,
A.
,
Guess
,
T. M.
,
Halloran
,
J.
,
Tadepalli
,
S. C.
, and
Morrison
,
T. M.
,
2012
, “
Considerations for Reporting Finite Element Analysis Studies in Biomechanics
,”
J. Biomech.
,
45
(
4
), pp.
625
633
.10.1016/j.jbiomech.2011.11.038
84.
Schemitsch
,
E. H.
,
Kowalski
,
M. J.
,
Swiontkowski
,
M. F.
, and
Harrington
,
R. M.
,
1995
, “
Comparison of the Effect of Reamed and Unreamed Locked Intramedullary Nailing on Blood Flow in the Callus and Strength of Union Following Fracture of the Sheep Tibia
,”
J. Orthop. Res.
,
13
(
3
), pp.
382
389
.10.1002/jor.1100130312
85.
White
,
R.
, and
Camuso
,
M.
,
2012
, “
Intramedullary Nailing
,” AO Surg. Ref. [Online], accessed Dec. 31, 2020, https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/tibial-shaft/simple-fracture-transverse/intramedullary-nailing
86.
Klein
,
M.
,
Stieger
,
A.
,
Stenger
,
D.
,
Scheuer
,
C.
,
Holstein
,
J. H.
,
Pohlemann
,
T.
,
Menger
,
M. D.
, and
Histing
,
T.
,
2015
, “
Comparison of Healing Process in Open Osteotomy Model and Open Fracture Model: Delayed Healing of Osteotomies After Intramedullary Screw Fixation
,”
J. Orthop. Res.
,
33
(
7
), pp.
971
978
.10.1002/jor.22861
87.
Carter
,
D. R.
,
Beaupré
,
G. S.
,
Giori
,
N. J.
, and
Helms
,
J. A.
,
1998
, “
Mechanobiology of Skeletal Regeneration
,”
Clin. Orthop. Relat. Res.,
355
(
Suppl
), pp.
S41
55
.10.1097/00003086-199810001-00006
88.
Claes
,
L. E.
, and
Heigele
,
C. A.
,
1999
, “
Magnitudes of Local Stress and Strain Along Bony Surfaces Predict the Course and Type of Fracture Healing
,”
J. Biomech.
,
32
(
3
), pp.
255
266
.10.1016/S0021-9290(98)00153-5
89.
Lacroix
,
D.
, and
Prendergast
,
P. J.
,
2002
, “
A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading
,”
J. Biomech.
,
35
(
9
), pp.
1163
1171
.10.1016/S0021-9290(02)00086-6
90.
Prendergast
,
P. J.
,
Huiskes
,
R.
, and
Søballe
,
K.
,
1997
, “
Biophysical Stimuli on Cells During Tissue Differentiation at Implant Interfaces
,”
J. Biomech.
, 30(6), pp.
539
548
.10.1016/S0021-9290(96)00140-6
91.
Epari
,
D. R.
,
Taylor
,
W. R.
,
Heller
,
M. O.
, and
Duda
,
G. N.
,
2006
, “
Mechanical Conditions in the Initial Phase of Bone Healing
,”
Clin. Biomech.
,
21
(
6
), pp.
646
655
.10.1016/j.clinbiomech.2006.01.003
92.
Claes
,
L.
,
Blakytny
,
R.
,
Göckelmann
,
M.
,
Schoen
,
M.
,
Ignatius
,
A.
, and
Willie
,
B.
,
2009
, “
Early Dynamization by Reduced Fixation Stiffness Does Not Improve Fracture Healing in a Rat Femoral Osteotomy Model
,”
J. Orthop. Res.
,
27
(
1
), pp.
22
27
.10.1002/jor.20712
93.
Claes
,
L.
,
Blakytny
,
R.
,
Besse
,
J.
,
Bausewein
,
C.
,
Ignatius
,
A.
, and
Willie
,
B.
,
2011
, “
Late Dynamization by Reduced Fixation Stiffness Enhances Fracture Healing in a Rat Femoral Osteotomy Model
,”
J. Orthop. Trauma
,
25
(
3
), pp.
169
174
.10.1097/BOT.0b013e3181e3d994
94.
Glatt
,
V.
,
Miller
,
M.
,
Ivkovic
,
A.
,
Liu
,
F.
,
Parry
,
N.
,
Griffin
,
D.
,
Vrahas
,
M.
, and
Evans
,
C.
,
2012
, “
Improved Healing of Large Segmental Defects in the Rat Femur by Reverse Dynamization in the Presence of Bone Morphogenetic Protein-2
,”
J. Bone Jt. Surg. - Ser. A
,
94
(
22
), pp.
2063
2073
.10.2106/JBJS.K.01604
95.
Boccaccio
,
A.
,
Uva
,
A. E.
,
Fiorentino
,
M.
,
Lamberti
,
L.
, and
Monno
,
G.
,
2016
, “
A Mechanobiology-Based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds
,”
Int. J. Biol. Sci.
,
12
(
1
), pp.
1
17
.10.7150/ijbs.13158
96.
Osagie-Clouard
,
L.
,
Kaufmann
,
J.
,
Blunn
,
G.
,
Coathup
,
M.
,
Pendegrass
,
C.
,
Meeson
,
R.
,
Briggs
,
T.
, and
Moazen
,
M.
,
2019
, “
Biomechanics of Two External Fixator Devices Used in Rat Femoral Fractures
,”
J. Orthop. Res.
,
37
(
2
), pp.
293
6
.10.1002/jor.24034
97.
Bi
,
X.
,
Grafe
,
I.
,
Ding
,
H.
,
Flores
,
R.
,
Munivez
,
E.
,
Jiang
,
M. M.
,
Dawson
,
B.
,
Lee
,
B.
, and
Ambrose
,
C. G.
,
2017
, “
Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment
,”
J. Bone Miner. Res.
, 32(2), pp.
347
359
.10.1002/jbmr.2997
98.
Jepsen
,
K. J.
,
Schaffler
,
M. B.
,
Kuhn
,
J. L.
,
Goulet
,
R. W.
,
Bonadio
,
J.
, and
Goldstein
,
S. A.
,
1997
, “
Type I Collagen Mutation Alters the Strength and Fatigue Behavior of Mov13 Cortical Tissue
,”
J. Biomech.
,
30
(
11–12
), pp.
1141
1147
.10.1016/S0021-9290(97)00088-2
99.
Callister
,
W. D.
,
1991
, “
Materials Science and Engineering: An Introduction 2nd Edition
,”
Materials Design
.10.1016/0261-3069(91)90101-9
You do not currently have access to this content.