Abstract

Commotio cordis is the second leading cause of sudden cardiac death in young athletes. Currently available chest protectors on the market are ineffective in preventing cases of commotio cordis in young athletes who play baseball. This study focused on using contour maps to identify specific baseball impact locations to the chest that may result in instances of commotio cordis to children during baseball games. By identifying these vulnerable locations, we may design and develop chest protectors that can provide maximum protection to prevent commotio cordis in young athletes. Simulation cases were run using the validated CHARM-10 chest model, a detailed finite element model representing an average 10-year-old child's chest. A baseball model was developed in company with the chest model, and then used to impact the chest at different locations. A 7 × 8 impact location matrix was designed with 56 unique baseball impact simulations. Left ventricle strain and pressure, reaction force between the baseball and chest, and rib deformations were analyzed. Left ventricle strain was highest from baseball impacts directly over the left ventricle (0.34) as well as impacts slightly lateral and superior to the cardiac silhouette (0.34). Left ventricle pressure was highest with impacts directly over the left ventricle (82.94 kPa). We have identified the most dangerous impact locations resulting in high left ventricle strain and pressure. This novel study provided evidence of where to emphasize protective materials for establishing effective chest protectors that will minimize instances of commotio cordis in young athletes.

References

1.
Doerer
,
J. J.
,
Haas
,
T. S.
,
Estes
,
N. A.
,
Link
,
M. S.
, and
Maron
,
B. J.
,
2007
, “
Evaluation of Chest Barriers for Protection Against Sudden Death Due to Commotio Cordis
,”
Am. J. Cardiol.
,
99
(
6
), pp.
857
859
.10.1016/j.amjcard.2006.10.053
2.
Maron
,
B. J.
, and
Estes
,
N. A.
,
2010
, “
Commotio Cordis
,”
N. Engl. J. Med.
,
362
(
10
), pp.
917
927
.10.1056/NEJMra0910111
3.
Maron
,
B. J.
,
2003
, “
Sudden Death in Young Athletes
,”
N. Engl. J. Med.
,
349
(
11
), pp.
1064
1075
.10.1056/NEJMra022783
4.
Link
,
M. S.
,
2012
, “
Commotio Cordis: Ventricular Fibrillation Triggered by Chest Impact–Induced Abnormalities in Repolarization
,”
Circulation
,
5
(
2
), pp.
425
432
.10.1161/CIRCEP.111.962712
5.
Link
,
M. S.
,
Bir
,
C.
,
Dau
,
N.
,
Madias
,
C.
,
Estes
,
N. M.
, and
Maron
,
B. J.
,
2008
, “
Protecting Our Children From the Consequences of Chest Blows on the Playing Field: A Time for Science Over Marketing
,”
Pediatrics
,
122
(
2
), pp.
437
439
.10.1542/peds.2007-2054
6.
Kumar
,
K.
,
Mandleywala
,
S. N.
,
Gannon
,
M. P.
,
Estes
,
N. A.
,
Weinstock
,
J.
, and
Link
,
M. S.
,
2017
, “
Development of a Chest Wall Protector Effective in Preventing Sudden Cardiac Death by Chest Wall Impact (Commotio Cordis)
,”
Clin. J. Sport Med.
,
27
(
1
), pp.
26
30
.10.1097/JSM.0000000000000297
7.
Weinstock
,
J.
,
Maron
,
B. J.
,
Song
,
C.
,
Mane
,
P. P.
,
Estes
,
N. M.
, and
Link
,
M. S.
,
2006
, “
Failure of Commercially Available Chest Wall Protectors to Prevent Sudden Cardiac Death Induced by Chest Wall Blows in an Experimental Model of Commotio Cordis
,”
Pediatrics
,
117
(
4
), pp.
e656
e662
.10.1542/peds.2005-1270
8.
Maron
,
B. J.
,
Doerer
,
J. J.
,
Haas
,
T. S.
,
Estes
,
N. A.
,
Hodges
,
J. S.
, and
Link
,
M. S.
,
2009
, “
Commotio Cordis and the Epidemiology of Sudden Death in Competitive Lacrosse
,”
Pediatrics
,
124
(
3
), pp.
966
971
.10.1542/peds.2009-0167
9.
Deady
,
B.
, and
Innes
,
G.
,
1999
, “
Sudden Death of a Young Hockey Player: Case Report of Commotio Cordis
,”
J. Emer. Med.
,
17
(
3
), pp.
459
462
.10.1016/S0736-4679(99)00006-2
10.
Madias
,
C.
,
Maron
,
B. J.
,
Alsheikh-Ali
,
A. A.
,
Estes Iii
,
N. A.
, and
Link
,
M. S.
,
2007
, “
Commotio Cordis
,”
Ind. Pacing Electrophysiol. J.
,
7
(
4
), pp.
235
245
.https://pubmed.ncbi.nlm.nih.gov/17957272/
11.
Link
,
M. S.
,
Maron
,
B. J.
,
VanderBrink
,
B. A.
,
Takeuchi
,
M.
,
Pandian
,
N. G.
,
Wang
,
P. J.
, and
Estes
,
N. M.
,
2001
, “
Impact Directly Over the Cardiac Silhouette is Necessary to Produce Ventricular Fibrillation in an Experimental Model of Commotio Cordis
,”
J. Am. Coll. Cardiol.
,
37
(
2
), pp.
649
654
.10.1016/S0735-1097(00)01142-6
12.
Chang
,
P. Y.
,
Hsu
,
Z. Y.
,
Chen
,
D. P.
,
Lai
,
J. Y.
, and
Wang
,
C. J.
,
2008
, “
Preliminary Analysis of the Forces on the Thoracic Cage of Patients With Pectus Excavatum After the Nuss Procedure
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
7
), pp.
881
885
.10.1016/j.clinbiomech.2008.02.010
13.
Antona-Makoshi
,
J.
,
Yamamoto
,
Y.
,
Kato
,
R.
,
Sato
,
F.
,
Ejima
,
S.
,
Dokko
,
Y.
, and
Yasuki
,
T.
,
2015
, “
Age-Dependent Factors Affecting Thoracic Response: A Finite Element Study Focused on Japanese Elderly Occupants
,”
Traffic Inj. Prev.
,
16
(
Suppl. 1
), pp.
S66
74
.10.1080/15389588.2015.1014552
14.
Schoell
,
S. L.
,
Weaver
,
A. A.
,
Vavalle
,
N. A.
, and
Stitzel
,
J. D.
,
2015
, “
Age- and Sex-Specific Thorax Finite Element Model Development and Simulation
,”
Traffic Inj. Prev.
,
16
(
Suppl. 1
), pp.
S57
65
.10.1080/15389588.2015.1005208
15.
Mendoza-Vazquez
,
M.
,
Davidsson
,
J.
, and
Brolin
,
K.
,
2015
, “
Construction and Evaluation of Thoracic Injury Risk Curves for a Finite Element Human Body Model in Frontal Car Crashes
,”
Accid. Anal. Prev.
,
85
, pp.
73
82
.10.1016/j.aap.2015.08.003
16.
Tsai
,
A.
,
Coats
,
B.
, and
Kleinman
,
P. K.
,
2012
, “
Stress Profile of Infant Rib in the Setting of Child Abuse: A Finite Element Parametric Study
,”
J. Biomech.
,
45
(
11
), pp.
1861
1868
.10.1016/j.jbiomech.2012.05.049
17.
Hadagali
,
P.
,
Peters
,
J. R.
, and
Balasubramanian
,
S.
,
2018
, “
Morphing the Feature-Based Multi-Blocks of Normative/Healthy Vertebral Geometries to Scoliosis Vertebral Geometries: Development of Personalized Finite Element Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
4
), pp.
297
324
.10.1080/10255842.2018.1448391
18.
Shen
,
M.
,
Mao
,
H.
,
Jiang
,
B.
,
Zhu
,
F.
,
Jin
,
X.
,
Dong
,
L.
,
Ham
,
S.
,
Palaniappan
,
P.
,
Chou
,
C.
, and
Yang
,
K.
,
2016
, “
Introduction of Two New Paediatric Finite Element Models for Pedestrian and Occupant Protections
,”
SAE
Paper No. 2016-01-1492.10.4271/2016-01-1492
19.
Jiang
,
B.
,
Mao
,
H.
,
Cao
,
L.
, and
Yang
,
K.
,
2013
, “
Experimental Validation of Pediatric Thorax Finite Element Model Under Dynamic Loading Condition and Analysis of Injury
,”
SAE
Paper No. 2013-01-0456.10.4271/2013-01-0456
20.
Jiang
,
B.
,
Cao
,
L.
,
Mao
,
H.
,
Wagner
,
C.
,
Marek
,
S.
, and
Yang
,
K. H.
,
2014
, “
Development of a 10-Year-Old Paediatric Thorax Finite Element Model Validated Against Cardiopulmonary Resuscitation Data
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
11
), pp.
1185
1197
.10.1080/10255842.2012.739164
21.
Mao
,
H.
,
Holcombe
,
S.
,
Shen
,
M.
,
Jin
,
X.
,
Wagner
,
C. D.
,
Wang
,
S. C.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2014
, “
Development of a 10-Year-Old Full Body Geometric Dataset for Computational Modeling
,”
Ann. Biomed. Eng.
,
42
(
10
), pp.
2143
2155
.10.1007/s10439-014-1078-5
22.
Jiang
,
B.
,
Mao
,
H.
,
Cao
,
L.
, and
Yang
,
K.
,
2014
, “
Application of an Anatomically-Detailed Finite Element Thorax Model to Investigate Pediatric Cardiopulmonary Resuscitation Techniques on Hard Bed
,”
Comput. Biol. Med.
,
52
, pp.
28
34
.10.1016/j.compbiomed.2014.05.014
23.
Vedula
,
G.
,
2004
, “
Experimental and Finite Element Study of the Design Parameters of an Aluminum Baseball Bat
,” Doctoral dissertation,
University of Massachusetts, Lowell, MA
.
24.
Link
,
M. S.
,
Maron
,
B. J.
,
Wang
,
P. J.
,
VanderBrink
,
B. A.
,
Zhu
,
W.
, and
Estes
,
N. M.
,
2003
, “
Upper and Lower Limits of Vulnerability to Sudden Arrhythmic Death With Chest-Wall Impact (Commotio Cordis)
,”
J. Am. Coll. Cardiol.
,
41
(
1
), pp.
99
104
.10.1016/S0735-1097(02)02669-4
25.
Garan
,
A. R.
,
Maron
,
B. J.
,
Wang
,
P. J.
,
Estes
,
N. M.
, III.
, and
Link
,
M. S.
,
2005
, “
Role of Streptomycin‐Sensitive Stretch‐Activated Channel in Chest Wall Impact Induced Sudden Death (Commotio Cordis)
,”
J. Cardiovasc. Electrophysiol.
,
16
(
4
), pp.
433
438
.10.1046/j.1540-8167.2005.40664.x
26.
Madias
,
C.
,
Maron
,
B. J.
,
Weinstock
,
J.
,
Estes
,
N. M.
, III.
, and
Link
,
M. S.
,
2007
, “
Commotio Cordis—Sudden Cardiac Death With Chest Wall Impact
,”
J. Cardiovasc. Electrophysiol.
,
18
(
1
), pp.
115
122
.10.1111/j.1540-8167.2006.00684.x
27.
Link
,
M. S.
,
Wang
,
P. J.
,
VanderBrink
,
B. A.
,
Avelar
,
E.
,
Pandian
,
N. G.
,
Maron
,
B. J.
, and
Estes
,
N. A.
,
1999
, “
Selective Activation of the K(+)(ATP) Channel is a Mechanism by Which Sudden Death is Produced by Low-Energy Chest-Wall Impact (Commotio Cordis)
,”
Circulation
,
100
(
4
), pp.
413
418
.10.1161/01.CIR.100.4.413
28.
Kohl
,
P.
,
Nesbitt
,
A. D.
,
Cooper
,
P. J.
, and
Lei
,
M.
,
2001
, “
Sudden Cardiac Death by Commotio Cordis: Role of Mechano-Electric Feedback
,”
Cardiovasc. Res.
,
50
(
2
), pp.
280
289
.10.1016/S0008-6363(01)00194-8
29.
NOCSAE
,
2019
, “
Standard Test Method and Performance Specification Used in Evaluating the Performance Characteristics of Protectors for Commotio Cordis
,” NOCSAE, Overland Park, KS.
30.
Maron
,
B. J.
,
Gohman
,
T. E.
,
Kyle
,
S. B.
,
Estes
,
N. A.
, and
Link
,
M. S.
,
2002
, “
Clinical Profile and Spectrum of Commotio Cordis
,”
JAMA
,
287
(
9
), pp.
1142
1146
.10.1001/jama.287.9.1142
31.
Maron
,
B. J.
,
Poliac
,
L. C.
,
Kaplan
,
J. A.
, and
Mueller
,
F. O.
,
1995
, “
Blunt Impact to the Chest Leading to Sudden Death From Cardiac Arrest During Sports Activities
,”
New Engl. J. Med.
,
333
(
6
), pp.
337
342
.10.1056/NEJM199508103330602
32.
Kalin
,
J.
,
Madias
,
C.
,
Alsheikh-Ali
,
A. A.
, and
Link
,
M. S.
,
2011
, “
Reduced Diameter Spheres Increases the Risk of Chest Blow-Induced Ventricular Fibrillation (Commotio Cordis)
,”
Heart Rhythm
,
8
(
10
), pp.
1578
1581
.10.1016/j.hrthm.2011.05.009
33.
Drewniak
,
E. I.
,
Spenciner
,
D. B.
, and
Crisco
,
J. J.
,
2007
, “
Mechanical Properties of Chest Protectors and the Likelihood of Ventricular Fibrillation Due to Commotio Cordis
,”
J. Appl. Biomech.
,
23
(
4
), pp.
282
288
.10.1123/jab.23.4.282
34.
Imboden
,
M.
,
de Coulon
,
E.
,
Poulin
,
A.
,
Dellenbach
,
C.
,
Rosset
,
S.
,
Shea
,
H.
, and
Rohr
,
S.
,
2019
, “
High-Speed Mechano-Active Multielectrode Array for Investigating Rapid Stretch Effects on Cardiac Tissue
,”
Nat. Commun.
,
10
(
1
), p.
834
.10.1038/s41467-019-08757-2
You do not currently have access to this content.