Abstract

Albeit seldom considered explicitly, the vasoactive state of a central artery can contribute to luminal control and thereby affect the in vivo values of flow-induced wall shear stress and pressure-induced intramural stress, which in turn are strong determinants of wall growth and remodeling. Here, we test the hypothesis that diminished vasoactive capacity compromises effective mechano-adaptations of central arteries. Toward this end, we use consistent methods to re-interpret published data on common carotid artery remodeling in a nonpharmacologic mouse model of induced hypertension and a model of connective tissue disorder that results in Marfan syndrome. The mice have identical genetic backgrounds and, in both cases, the data are consistent with the hypothesis considered. In particular, carotid arteries with strong (normal) vasoactive capacity tend to maintain wall thickness and in vivo axial stretch closer to homeostatic, thus resulting in passive circumferential wall stress and energy storage close to normal. We conclude that effective vasoactivity helps to control the biomechanical state in which the cells and matrix turnover, thus helping to delineate mechano-adaptive from maladaptive remodeling. Future analyses of experimental data and computational models of growth and remodeling should account for this strong coupling between smooth muscle contractile capacity and central arterial remodeling.

References

1.
Dajnowiec
,
D.
, and
Langille
,
B. L.
,
2007
, “
Arterial Adaptations to Chronic Changes in Haemodynamic Function: Coupling Vasomotor Tone to Structural Remodelling
,”
Clin. Sci.
,
113
(
1
), pp.
15
23
.10.1042/CS20060337
2.
Valentín
,
A.
,
Cardamone
,
L.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2009
, “
Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure
,”
J. R. Soc. Interface
,
6
(
32
), pp.
293
306
.10.1098/rsif.2008.0254
3.
Bakker
,
E. N. T. P.
,
van der Meulen
,
E. T.
,
van den Berg
,
B. M.
,
Everts
,
V.
,
Spaan
,
J. A. E.
, and
VanBavel
,
E.
,
2002
, “
Inward Remodeling Follows Chronic Vasoconstriction in Isolated Resistance Arteries
,”
J. Vasc. Res.
,
39
(
1
), pp.
12
20
.10.1159/000048989
4.
Martinez‐Lemus
,
L. A.
,
Hill
,
M. A.
,
Bolz
,
S. S.
,
Pohl
,
U.
, and
Meininger
,
G. A.
,
2004
, “
Acute Mechanoadaptation of Vascular Smooth Muscle Cells in Response to Continuous Arteriolar Vasoconstriction: Implications for Functional Remodeling
,”
Faseb J.
,
18
(
6
), pp.
708
710
.10.1096/fj.03-0634fje
5.
Laurent
,
S.
, and
Boutouyrie
,
P.
,
2015
, “
The Structural Factor of Hypertension: Large and Small Artery Alterations
,”
Circ. Res.
,
116
(
6
), pp.
1007
1021
.10.1161/CIRCRESAHA.116.303596
6.
Korneva
,
A.
, and
Humphrey
,
J. D.
,
2019
, “
Maladaptive Aortic Remodeling in Hypertension Associates With Dysfunctional Smooth Muscle Contractility
,”
Am. J. Physiol. Circ. Physiol.
,
316
(
2
), pp.
H265
H278
.10.1152/ajpheart.00503.2017
7.
Zhou
,
B.
,
Prim
,
D. A.
,
Romito
,
E. J.
,
McNamara
,
L. P.
,
Spinale
,
F. G.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2018
, “
Contractile Smooth Muscle and Active Stress Generation in Porcine Common Carotids
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
014501
.10.1115/1.4037949
8.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.10.1161/HYPERTENSIONAHA.107.103440
9.
Wu
,
J.
,
Thabet
,
S. R.
,
Kirabo
,
A.
,
Trott
,
D. W.
,
Saleh
,
M. A.
,
Xiao
,
L.
,
Madhur
,
M. S.
,
Chen
,
W.
, and
Harrison
,
D. G.
,
2014
, “
Inflammation and Mechanical Stretch Promote Aortic Stiffening in Hypertension Through Activation of P38 Mitogen-Activated Protein Kinase
,”
Circ. Res.
,
114
(
4
), pp.
616
625
.10.1161/CIRCRESAHA.114.302157
10.
Bersi
,
M. R.
,
Khosravi
,
R.
,
Wujciak
,
A. J.
,
Harrison
,
D. G.
, and
Humphrey
,
J. D.
,
2017
, “
Differential Cell-Matrix Mechanoadaptations and Inflammation Drive Regional Propensities to Aortic Fibrosis, Aneurysm or Dissection in Hypertension
,”
J. R. Soc. Interface
,
14
(
136
), p.
20170327
.10.1098/rsif.2017.0327
11.
Chung
,
A. W. Y.
,
Au Yeung
,
K.
,
Sandor
,
G. G. S.
,
Judge
,
D. P.
,
Dietz
,
H. C.
, and
Van Breemen
,
C.
,
2007
, “
Loss of Elastic Fiber Integrity and Reduction of Vascular Smooth Muscle Contraction Resulting From the Upregulated Activities of Matrix Metalloproteinase-2 and -9 in the Thoracic Aortic Aneurysm in Marfan Syndrome
,”
Circ. Res.
,
101
(
5
), pp.
512
522
.10.1161/CIRCRESAHA.107.157776
12.
Murtada
,
S.-I.
,
Ferruzzi
,
J.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2016
, “
Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051008
.10.1115/1.4032938
13.
Eberth
,
J. F.
,
Gresham
,
V. C.
,
Reddy
,
A. K.
,
Popovic
,
N.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2009
, “
Importance of Pulsatility in Hypertensive Carotid Artery Growth and Remodeling
,”
J Hypertens
,
27
(
10
), pp.
2010
2021
.10.1097/HJH.0b013e32832e8dc8
14.
Eberth
,
J. F.
,
Popovic
,
N.
,
Gresham
,
V. C.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2010
, “
Time Course of Carotid Artery Growth and Remodeling in Response to Altered Pulsatility
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
6
), pp.
H1875
H1883
.10.1152/ajpheart.00872.2009
15.
Eberth
,
J. F.
,
Taucer
,
A. I.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2009
, “
Mechanics of Carotid Arteries in a Mouse Model of Marfan Syndrome
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1093
1104
.10.1007/s10439-009-9686-1
16.
Marque
,
V.
,
Kieffer
,
P.
,
Gayraud
,
B.
,
Lartaud-Idjouadiene
,
I.
,
Ramirez
,
F.
, and
Atkinson
,
J.
,
2001
, “
Aortic Wall Mechanics and Composition in a Transgenic Mouse Model of Marfan Syndrome
,”
Arterioscler., Thromb., Vasc. Biol.
,
21
(
7
), pp.
1184
1189
.10.1161/hq0701.092136
17.
Prim
,
D. A.
,
Lane
,
B. A.
,
Ferruzzi
,
J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2021
, “
Evaluation of the Stress–Growth Hypothesis in Saphenous Vein Perfusion Culture
,”
Ann. Biomed. Eng.
,
49
(
1
), pp.
487
501
.10.1007/s10439-020-02582-1
18.
Shadwick
,
R. E.
,
1999
, “
Mechanical Design in Arteries
,”
J. Exp. Biol.
,
202
(
23
), pp.
3305
3313
.10.1242/jeb.202.23.3305
19.
Bersi
,
M. R.
,
Ferruzzi
,
J.
,
Eberth
,
J. F.
,
Gleason
,
R. L.
, Jr.
, and
Humphrey
,
J. D.
,
2014
, “
Consistent Biomechanical Phenotyping of Common Carotid Arteries From Seven Genetic, Pharmacological, and Surgical Mouse Models
,”
Ann. Biomed. Eng
,
42
(
6
), pp.
1207
1223
.10.1007/s10439-014-0988-6
20.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2013
, “
Parametric Study of Effects of Collagen Turnover on the Natural History of Abdominal Aortic Aneurysms
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
469
(
2150
), p.
20120556
.10.1098/rspa.2012.0556
21.
Latorre
,
M.
,
Spronck
,
B.
, and
Humphrey
,
J. D.
,
2021
, “
Complementary Roles of Mechanotransduction and Inflammation in Vascular Homeostasis
,”
Proc. R. Soc. A
,
477
(
2245
), p.
20200622
.10.1098/rspa.2020.0622
22.
Fridez
,
P.
,
Makino
,
A.
,
Kakoi
,
D.
,
Miyazaki
,
H.
,
Meister
,
J. J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2002
, “
Adaptation of Conduit Artery Vascular Smooth Muscle Tone to Induced Hypertension
,”
Ann. Biomed. Eng.
,
30
(
7
), pp.
905
916
.10.1114/1.1507326
23.
Fridez
,
P.
,
Makino
,
A.
,
Miyazaki
,
H.
,
Meister
,
J.-J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2001
, “
Short-Term Biomechanical Adaptation of the Rat Carotid to Acute Hypertension: Contribution of Smooth Muscle
,”
Ann. Biomed. Eng.
,
29
(
1
), pp.
26
34
.10.1114/1.1342054
24.
Murtada
,
S.-I.
,
Kawamura
,
Y.
,
Li
,
G.
,
Schwartz
,
M. A.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2021
, “
Developmental Origins of Mechanical Homeostasis in the Aorta
,”
Dev. Dyn.
,
250
(
5
), pp.
629
639
.10.1002/dvdy.283
25.
Kuang
,
S.-Q.
,
Geng
,
L.
,
Prakash
,
S. K.
,
Cao
,
J.-M.
,
Guo
,
S.
,
Villamizar
,
C.
,
Kwartler
,
C. S.
,
Peters
,
A. M.
,
Brasier
,
A. R.
, and
Milewicz
,
D. M.
,
2013
, “
Aortic Remodeling After Transverse Aortic Constriction in Mice is Attenuated With AT1 Receptor Blockade
,”
Arterioscler. Thromb. Vasc. Biol.
,
33
(
9
), pp.
2172
2179
.10.1161/ATVBAHA.113.301624
You do not currently have access to this content.