Abstract

Accidental foot injuries including metatarsal fractures commonly result from compressive loading. The ability of personal protective equipment to prevent these traumatic injuries depends on the understanding of metatarsal fracture tolerance. However, the in situ fracture tolerance of the metatarsals under direct compressive loading to the foot's dorsal surface remains unexplored, even though the metatarsals are the most commonly fractured bones in the foot. The goal of this study was to quantify the in situ fracture tolerance of the metatarsals under simulated quasi-static compressive loading. Fresh-frozen cadaveric feet (n = 10) were mounted into a testing apparatus to replicate a natural stance and loaded at the midmetatarsals with a cylindrical bar to simulate a crushing-type injury. A 900 N compressive force was initially applied, followed by 225 N successive load increments. Specimens were examined using X-ray imaging between load increments to assess for the presence of metatarsal fractures. Descriptive statistics were conducted for metatarsal fracture force and deformation. Pearson correlation tests were used to quantify the correlation between fracture force with age and body mass index (BMI). The force and deformation at fracture were 1861 ± 642 N (mean ± standard deviation) and 22.6 ± 3.4 mm, respectively. Fracture force was correlated with donor BMI (r = 0.90). Every fractured specimen experienced a transverse fracture in the second metatarsal. New biomechanical data from this study further quantify the metatarsal fracture risk under compressive loading and will help to improve the development and testing of improved personal protective equipment for the foot to avoid catastrophic injury.

References

1.
Conti
,
S. F.
, and
Silverman
,
L.
,
2002
, “
Epidemiology of Foot and Ankle Injuries in the Workplace
,”
Foot Ankle Clin.
,
7
(
2
), pp.
273
290
.10.1016/S1083-7515(02)00028-1
2.
Oleske
,
D. M.
,
Hahn
,
J. J.
, and
Leibold
,
M.
,
1992
, “
Work-Related Injuries to the Foot. Data From an Occupational Injury/Illness Surveillance System
,”
J. Occup. Med.
,
34
(
6
), pp.
650
655
.https://pubmed.ncbi.nlm.nih.gov/1352347/
3.
Vora
,
A.
, and
Myerson
,
M. S.
,
2002
, “
Crush Injuries of the Foot in the Industrial Setting
,”
Foot Ankle Clin.
,
7
(
2
), pp.
367
383
.10.1016/S1083-7515(02)00035-9
4.
2017
,
Injury Facts
,
Bureau of Labor Statistics, National Safety Council
, Itasca, IL.
5.
Shibuya
,
N.
,
Davis
,
M. L.
, and
Jupiter
,
D. C.
,
2014
, “
Epidemiology of Foot and Ankle Fractures in the United States: An Analysis of the National Trauma Data Bank (2007 to 2011)
,”
J. Foot Ankle Surg.
,
53
(
5
), pp.
606
608
.10.1053/j.jfas.2014.03.011
6.
Petrisor
,
B. A.
,
Ekrol
,
I.
, and
Court-Brown
,
C.
,
2006
, “
The Epidemiology of Metatarsal Fractures
,”
Foot Ankle Int.
,
27
(
3
), pp.
172
174
.10.1177/107110070602700303
7.
Hong
,
C. C.
,
Nashi
,
N.
,
Kuan
,
W. S.
,
Teh
,
J. W. D.
, and
Tan
,
K. J.
,
2015
, “
Forklift-Related Crush Injuries of the Foot and Ankle
,”
Foot Ankle Int.
,
36
(
7
), pp.
806
811
.10.1177/1071100715576486
8.
Buddecke
,
D. E.
,
Polk
,
M. A.
, and
Barp
,
E. A.
,
2010
, “
Metatarsal Fractures
,”
Clin. Podiatr. Med. Surg.
,
27
(
4
), pp.
601
624
.10.1016/j.cpm.2010.07.001
9.
Miller
,
C. M.
,
Winter
,
W. G.
,
Bucknell
,
A. L.
, and
Jonassen
,
A. E.
,
1998
, “
Injuries to the Midtarsal Joint and Lesser Tarsal Bones
,”
J. Am. Acad. Orthop. Surg.
,
6
(
4
), pp.
249
258
.10.5435/00124635-199807000-00006
10.
Milgrom
,
C.
,
Finestone
,
A.
,
Sharkey
,
N.
,
Hamel
,
A.
,
Mandes
,
V.
,
Burr
,
D.
,
Arndt
,
A.
, and
Ekenman
,
I.
,
2002
, “
Metatarsal Strains Are Sufficient to Cause Fatigue Fracture During Cyclic Overloading
,”
Foot Ankle Int.
,
23
(
3
), pp.
230
235
.10.1177/107110070202300307
11.
Smolen
,
C.
, and
Quenneville
,
C. E.
,
2017
, “
A Finite Element Model of the Foot/Ankle to Evaluate Injury Risk in Various Postures
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1993
2008
.10.1007/s10439-017-1844-2
12.
Fujikawa
,
T.
,
Asano
,
Y.
,
Nishimoto
,
T.
, and
Nishikata
,
R.
,
2017
, “
Static Fracture Tolerance of Human Metatarsal in Being Run Over by Robot
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
IEEE
, Vancouver, BC, Canada, Sept. 24–28, pp.
6935
6942
.10.1109/IROS.2017.8206618
13.
Danesi
,
V.
,
Cristofolini
,
L.
,
Juszczyk
,
M. M.
,
Erani
,
P.
, and
Viceconti
,
M.
,
2012
, “
Mechanical Properties of the Human Metatarsal Bones
,”
J. Mech. Med. Biol.
,
12
(
4
), p.
1250062
.10.1142/S0219519412005034
14.
Fung
,
A.
,
Loundagin
,
L. L.
, and
Edwards
,
W. B.
,
2017
, “
Experimental Validation of Finite Element Predicted Bone Strain in the Human Metatarsal
,”
J. Biomech.
,
60
, pp.
22
29
.10.1016/j.jbiomech.2017.06.010
15.
Gutekunst
,
D. J.
,
Patel
,
T. K.
,
Smith
,
K. E.
,
Commean
,
P. K.
,
Silva
,
M. J.
, and
Sinacore
,
D. R.
,
2013
, “
Predicting Ex Vivo Failure Loads in Human Metatarsals Using Bone Strength Indices Derived From Volumetric Quantitative Computed Tomography
,”
J. Biomech.
,
46
(
4
), pp.
745
750
.10.1016/j.jbiomech.2012.11.019
16.
Kwon
,
J. Y.
,
Campbell
,
J. T.
,
Myerson
,
M. S.
, and
Jeng
,
C. L.
,
2011
, “
Effect of a Steel Toe Cap on Forefoot Injury Pattern in a Cadaveric Model
,”
Foot Ankle Int.
,
32
(
4
), pp.
443
447
.10.3113/FAI.2011.0443
17.
Masson
,
C.
,
Thollon
,
L.
,
Cesari
,
D.
, and
Brunet
,
C.
,
2006
, “
Effects of Static High Compression on Human Foot-Ankle: Biomechanical Response and Injuries
,”
Surg. Radiol. Anat.
,
28
(
1
), pp.
46
53
.10.1007/s00276-005-0043-2
18.
ASTM International
,
2018
,
Standard Test Methods for Foot Protection
,
ASTM International
, West Conshohocken, PA, Standard No. F2413-18.
19.
Yoganandan
,
N.
,
Arun
,
M. W. J.
,
Pintar
,
F. A.
, and
Banerjee
,
A.
,
2015
, “
Lower Leg Injury Reference Values and Risk Curves From Survival Analysis for Male and Female Dummies: Meta-Analysis of Postmortem Human Subject Tests
,”
Traffic Inj. Prev.
,
16
(
sup1
), pp.
S100
S107
.10.1080/15389588.2015.1015118
20.
Cakir
,
H.
,
Van Vliet-Koppert
,
S. T.
,
Van Lieshout
,
E. M. M.
,
De Vries
,
M. R.
,
Van Der Elst
,
M.
, and
Schepers
,
T.
,
2011
, “
Demographics and Outcome of Metatarsal Fractures
,”
Arch. Orthop. Trauma Surg.
,
131
(
2
), pp.
241
245
.10.1007/s00402-010-1164-6
21.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Kumaresan
,
S.
, and
Boynton
,
M.
,
1997
, “
Axial Impact Biomechanics of the Human Foot-Ankle Complex
,”
Axial Impact Biomech. Human Foot-Ankle Complex
,
119
(
4
), pp.
433
437
.10.1115/1.2798290
22.
Gallenberger
,
K.
,
Yoganandan
,
N.
, and
Pintar
,
F.
,
2013
, “
Biomechanics of Foot/Ankle Trauma With Variable Energy Impacts
,”
Ann. Adv. Automot. Med.
,
57
, pp.
123
132
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861818/
23.
Parenteau
,
C. S.
,
Viano
,
D. C.
, and
Petit
,
P. Y.
,
1998
, “
Biomechanical Properties of Human Cadaveric Ankle-Subtalar Joints in Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
105
111
.10.1115/1.2834289
24.
Shin
,
J.
, and
Untaroiu
,
C. D.
,
2013
, “
Biomechanical and Injury Response of Human Foot and Ankle Under Complex Loading
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101008
.10.1115/1.4025108
25.
Henneberg
,
M.
, and
Ulijaszek
,
S. J.
,
2010
, “
Body Frame Dimensions Are Related to Obesity and Fatness: Lean Trunk Size, Skinfolds, and Body Mass Index
,”
Am. J. Hum. Biol.
,
22
(
1
), pp.
83
91
.10.1002/ajhb.20957
26.
Chumlea
,
W. C.
,
Wisemandle
,
W.
,
Guo
,
S. S.
, and
Siervogel
,
R. M.
,
2002
, “
Relations Between Frame Size and Body Composition and Bone Mineral Status
,”
Am. J. Clin. Nutr.
,
75
(
6
), pp.
1012
1016
.10.1093/ajcn/75.6.1012
You do not currently have access to this content.