Abstract

Cardiovascular diseases (CVDs) are the leading cause of death in the developed world. CVD can include atherosclerosis, aneurysm, dissection, or occlusion of the main arteries. Many CVDs are caused by unhealthy hemodynamics. Some CVDs can be treated with the implantation of stents and stent grafts. Investigations have been carried out to understand the effects of stents and stent grafts have on arteries and the hemodynamic changes post-treatment. Numerous studies on stent hemodynamics have been carried out using computational fluid dynamics (CFD) which has yielded significant insight into the effect of stent mesh design on near-wall blood flow and improving hemodynamics. Particle image velocimetry (PIV) has also been used to capture behavior of fluids that mimic physiological hemodynamics. However, PIV studies have largely been restricted to unstented models or intra-aneurysmal flow rather than peri or distal stent flow behaviors. PIV has been used both as a standalone measurement method and as a comparison to validate the CFD studies. This article reviews the successes and limitations of CFD and PIV-based modeling methods used to investigate the hemodynamic effects of stents. The review includes an overview of physiology and relevant mechanics of arteries as well as consideration of boundary conditions and the working fluids used to simulate blood for each modeling method along with the benefits and limitations introduced.

References

1.
World Health Organization (WHO),
2012
, “
Cardiovascular Diseases (CVDs)
,”
World Health Organization
,
Geneva, Switzerland
, Fact Sheet No. 317.
2.
Tse
,
K. M.
,
Chang
,
R.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Venkatesh
,
S. K.
, and
Ho
,
P.
,
2013
, “
A Computational Fluid Dynamics Study on Geometrical Influence of the Aorta on Haemodynamics
,”
Eur. J. Cardio-Thorac. Surg.
,
43
(
4
), pp.
829
838
.10.1093/ejcts/ezs388
3.
Lee
,
B.-K.
,
2011
, “
Computational Fluid Dynamics in Cardiovascular Disease
,”
Korean Circ. J.
,
41
(
8
), pp.
423
430
.10.4070/kcj.2011.41.8.423
4.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
DeMont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2008
, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021015
.10.1115/1.2900724
5.
Matsuura
,
M.
,
Tupin
,
S.
, and
Ohta
,
M.
,
2018
, “
Compliance Effect on the Flow Condition in Vascular In Vitro Experiments
,”
ASME
Paper No. IMECE2018-87362.10.1115/IMECE2018-87362
6.
Van Ooij
,
P.
,
Guédon
,
A.
,
Poelma
,
C.
,
Schneiders
,
J.
,
Rutten
,
M.
,
Marquering
,
H.
,
Majoie
,
C.
,
VanBavel
,
E.
, and
Nederveen
,
A.
,
2012
, “
Complex Flow Patterns in a Real‐Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared With Particle Image Velocimetry and Computational Fluid Dynamics
,”
NMR Biomed.
,
25
(
1
), pp.
14
26
.10.1002/nbm.1706
7.
Morbiducci
,
U.
,
Kok
,
A. M.
,
Kwak
,
B. R.
,
Stone
,
P. H.
,
Steinman
,
D. A.
, and
Wentzel
,
J. J.
,
2016
, “
Atherosclerosis at Arterial Bifurcations: Evidence for the Role of Haemodynamics and Geometry
,”
Thromb. Haemostasis
,
115
(
3
), pp.
484
492
.10.1160/th15-07-0597
8.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2009
, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
91
107
.10.1146/annurev.fluid.40.111406.102126
9.
Berry
,
J. L.
,
Manoach
,
E.
,
Mekkaoui
,
C.
,
Rolland
,
P. H.
,
Moore
,
J. E.
, and
Rachev
,
A.
,
2002
, “
Hemodynamics and Wall Mechanics of a Compliance Matching Stent: In Vitro and In Vivo Analysis
,”
J. Vasc. Interventional Radiol.
,
13
(
1
), pp.
97
105
.10.1016/S1051-0443(07)60015-3
10.
Bosman
,
W.-M. P. F.
,
Hinnen
,
J.-W.
,
Rixen
,
D. J.
, and
Hamming
,
J. F.
,
2009
, “
Effect of Stent-Graft Compliance on Endotension After EVAR
,”
J. Endovasc. Ther.
,
16
(
1
), pp.
105
113
.10.1583/08-2505.1
11.
Chung
,
B.
, and
Cebral
,
J. R.
,
2015
, “
CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
122
138
.10.1007/s10439-014-1093-6
12.
Conway
,
C.
,
Sharif
,
F.
,
McGarry
,
P.
, and
McHugh
,
P.
,
2012
, “
A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach
,”
Cardiovasc. Eng. Technol.
,
3
(
4
), pp.
374
387
.10.1007/s13239-012-0104-8
13.
Boland
,
E. L.
,
Grogan
,
J. A.
,
Conway
,
C.
, and
McHugh
,
P. E.
,
2016
, “
Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery
,”
JOM
,
68
(
4
), pp.
1198
1203
.10.1007/s11837-015-1761-5
14.
Yazdi
,
S. G.
,
Geoghegan
,
P. H.
,
Docherty
,
P. D.
,
Jermy
,
M.
, and
Khanafer
,
A.
,
2018
, “
A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques
,”
Ann. Biomed. Eng.
,
46
(
11
), pp.
1697
1721
.10.1007/s10439-018-2085-8
15.
Raschi
,
M.
,
Mut
,
F.
,
Byrne
,
G.
,
Putman
,
C. M.
,
Tateshima
,
S.
,
Viñuela
,
F.
,
Tanoue
,
T.
,
Tanishita
,
K.
, and
Cebral
,
J. R.
,
2012
, “
CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
2
), pp.
214
228
.10.1002/cnm.1459
16.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S.
, and
Vlachos
,
P.
,
2009
, “
In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1310
1321
.10.1007/s10439-009-9697-y
17.
Ionita
,
C. N.
,
Hoi
,
Y.
,
Meng
,
H.
, and
Rudin
,
S.
,
2004
, “
Particle Image Velocimetry (PIV) Evaluation of Flow Modification in Aneurysm Phantoms Using Asymmetric Stents
,”
Proc. SPIE
,
5369
, pp.
295
306
.10.1117/12.534274
18.
Elkins
,
C. J.
, and
Alley
,
M. T.
,
2007
, “
Magnetic Resonance Velocimetry: Applications of Magnetic Resonance Imaging in the Measurement of Fluid Motion
,”
Exp. Fluids
,
43
(
6
), pp.
823
858
.10.1007/s00348-007-0383-2
19.
Neville
,
R. F.
,
Elkins
,
C. J.
,
Alley
,
M. T.
, and
Wicker
,
R. B.
,
2011
, “
Hemodynamic Comparison of Differing Anastomotic Geometries Using Magnetic Resonance Velocimetry
,”
J. Surg. Res.
,
169
(
2
), pp.
311
318
.10.1016/j.jss.2009.12.008
20.
Xu
,
P.
,
Liu
,
X.
,
Zhang
,
H.
,
Ghista
,
D.
,
Zhang
,
D.
,
Shi
,
C.
, and
Huang
,
W.
,
2018
, “
Assessment of Boundary Conditions for CFD Simulation in Human Carotid Artery
,”
Biomech. Model. Mechanobiol.
,
17
(
6
), pp.
1581
1597
.10.1007/s10237-018-1045-4
21.
Figueroa
,
C.
,
Taylor
,
C.
,
Chiou
,
A. J.
,
Yeh
,
V.
, and
Zarins
,
C. K.
,
2009
, “
Magnitude and Direction of Pulsatile Displacement Forces Acting on Thoracic Aortic Endografts
,”
J. Endovasc. Ther.
,
16
(
3
), pp.
350
358
.10.1583/09-2738.1
22.
Shrestha
,
M.
,
Pichlmaier
,
M.
,
Martens
,
A.
,
Hagl
,
C.
,
Khaladj
,
N.
, and
Haverich
,
A.
,
2013
, “
Total Aortic Arch Replacement With a Novel Four-Branched Frozen Elephant Trunk Graft: First-in-Man Results
,”
Eur. J. Cardio-Thorac. Surg.
,
43
(
2
), pp.
406
410
.10.1093/ejcts/ezs296
23.
Tanoue
,
T.
,
Tateshima
,
S.
,
Villablanca
,
J. P.
,
Viñuela
,
F.
, and
Tanishita
,
K.
,
2011
, “
Wall Shear Stress Distribution Inside Growing Cerebral Aneurysm
,”
Am. J. Neuroradiol.
,
32
(
9
), pp.
1732
1737
.10.3174/ajnr.A2607
24.
Lauric
,
A.
,
Hippelheuser
,
J.
,
Cohen
,
A. D.
,
Kadasi
,
L. M.
, and
Malek
,
A. M.
,
2014
, “
Wall Shear Stress Association With Rupture Status in Volume Matched Sidewall Aneurysms
,”
J. NeuroInterventional Surg.
,
6
(
6
), pp.
466
473
.10.1136/neurintsurg-2013-010871
25.
Ong
,
C.
,
Xiong
,
F.
,
Kabinejadian
,
F.
,
Praveen Kumar
,
G.
,
Cui
,
F.
,
Chen
,
G.
,
Ho
,
P.
, and
Leo
,
H.
,
2019
, “
Hemodynamic Analysis of a Novel Stent Graft Design With Slit Perforations in Thoracic Aortic Aneurysm
,”
J. Biomech.
,
85
, pp.
210
217
.10.1016/j.jbiomech.2019.01.019
26.
Suess
,
T.
,
Anderson
,
J.
,
Danielson
,
L.
,
Pohlson
,
K.
,
Remund
,
T.
,
Blears
,
E.
,
Gent
,
S.
, and
Kelly
,
P.
,
2016
, “
Examination of Near-Wall Hemodynamic Parameters in the Renal Bridging Stent of Various Stent Graft Configurations for Repairing Visceral Branched Aortic Aneurysms
,”
J. Vasc. Surg.
,
64
(
3
), pp.
788
796
.10.1016/j.jvs.2015.04.421
27.
Geoghegan
,
P. H.
,
2012
, “In Vitro Experimental Investigation Into the Effect of Compliance on Models of Arterial Hemodynamics,”
Ph.D. thesis
,
College of Engineering, University of Canterbury
,
Christchurch, New Zealand
.http://hdl.handle.net/10092/7529
28.
Humphrey
,
J. D.
,
2001
, “
Blood Vessels, Mechanical and Physical Properties of
,”
Encyclopedia of Materials: Science and Technology
,
K. H. J.
Buschow
,
R. W.
Cahn
,
M. C.
Flemings
,
B.
Ilschner
,
E. J.
Kramer
,
S.
Mahajan
, and
P.
Veyssière
, eds.,
Elsevier
,
Oxford, UK
, pp.
748
751
.
29.
Boyd
,
A. J.
,
Kuhn
,
D. C. S.
,
Lozowy
,
R. J.
, and
Kulbisky
,
G. P.
,
2016
, “
Low Wall Shear Stress Predominates at Sites of Abdominal Aortic Aneurysm Rupture
,”
J. Vasc. Surg.
,
63
(
6
), pp.
1613
1619
.10.1016/j.jvs.2015.01.040
30.
Chen
,
H. Y.
,
Hermiller
,
J.
,
Sinha
,
A. K.
,
Sturek
,
M.
,
Zhu
,
L.
, and
Kassab
,
G. S.
,
2009
, “
Effects of Stent Sizing on Endothelial and Vessel Wall Stress: Potential Mechanisms for In-Stent Restenosis
,”
J. Appl. Physiol.
,
106
(
5
), pp.
1686
1691
.10.1152/japplphysiol.91519.2008
31.
Giannoglou
,
G. D.
,
Soulis
,
J. V.
,
Farmakis
,
T. M.
,
Farmakis
,
D. M.
, and
Louridas
,
G. E.
,
2002
, “
Haemodynamic Factors and the Important Role of Local Low Static Pressure in Coronary Wall Thickening
,”
Int. J. Cardiol.
,
86
(
1
), pp.
27
40
.10.1016/S0167-5273(02)00188-2
32.
Huang
,
R. F.
,
Yang
,
T.-F.
, and
Lan
,
Y. K.
,
2010
, “
Pulsatile Flows and Wall-Shear Stresses in Models Simulating Normal and Stenosed Aortic Arches
,”
Exp. Fluids
,
48
(
3
), pp.
497
508
.10.1007/s00348-009-0754-y
33.
Lantz
,
J.
,
Renner
,
J.
, and
Karlsson
,
M.
,
2011
, “
Wall Shear Stress in a Subject Specific Human Aorta—Influence of Fluid-Structure Interaction
,”
Int. J. Appl. Mech.
,
03
(
04
), pp.
759
778
.10.1142/S1758825111001226
34.
Truskey
,
G. A.
,
Barber
,
K. M.
,
Robey
,
T. C.
,
Olivier
,
L. A.
, and
Combs
,
M. P.
,
1995
, “
Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation
,”
ASME J. Biomech. Eng.
,
117
(
2
), pp.
203
210
.10.1115/1.2796002
35.
Davies
,
P. F.
, and
Tripathi
,
S. C.
,
1993
, “
Mechanical Stress Mechanisms and the Cell. An Endothelial Paradigm
,”
Circ. Res.
,
72
(
2
), pp.
239
245
.10.1161/01.RES.72.2.239
36.
Alkhalili
,
K.
,
Hannallah
,
J.
,
Cobb
,
M.
,
Chalouhi
,
N.
,
Philips
,
J. L.
,
Echeverria
,
A. B.
,
Jabbour
,
P.
,
Babiker
,
M. H.
,
Frakes
,
D. H.
, and
Gonzalez
,
L. F.
,
2018
, “
The Effect of Stents in Cerebral Aneurysms: A Review
,”
Asian J. Neurosurg.
,
13
(
2
), pp.
201
211
.10.4103/1793-5482.175639
37.
Moore
,
J. E.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
,
110
(
2
), pp.
225
240
.10.1016/0021-9150(94)90207-0
38.
Chatzizisis
,
Y. S.
,
Coskun
,
A. U.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2007
, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling. Molecular, Cellular, and Vascular Behavior
,”
J. Am. Coll. Cardiol.
,
49
(
25
), pp.
2379
2393
.10.1016/j.jacc.2007.02.059
39.
Callaghan
,
F. M.
, and
Grieve
,
S. M.
,
2018
, “
Normal Patterns of Thoracic Aortic Wall Shear Stress Measured Using Four-Dimensional Flow MRI in a Large Population
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
315
(
5
), pp.
H1174
H1181
.10.1152/ajpheart.00017.2018
40.
Xiang
,
J.
,
Yu
,
J.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2016
, “
Hemodynamic-Morphological Discriminant Models for Intracranial Aneurysm Rupture Remain Stable With Increasing Sample Size
,”
J. NeuroInterventional Surg.
,
8
(
1
), pp.
104
110
.10.1136/neurintsurg-2014-011477
41.
Zhang
,
Y.
,
Takao
,
H.
,
Murayama
,
Y.
, and
Qian
,
Y.
,
2013
, “
Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture
,”
Sci. World J.
,
2013
, p.
508131
.10.1155/2013/508131
42.
Chien
,
A.
,
Tateshima
,
S.
,
Castro
,
M.
,
Sayre
,
J.
,
Cebral
,
J.
, and
Viñuela
,
F.
,
2008
, “
Patient-Specific Flow Analysis of Brain Aneurysms at a Single Location: Comparison of Hemodynamic Characteristics in Small Aneurysms
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1113
1120
.10.1007/s11517-008-0400-5
43.
Doutel
,
E.
,
Viriato
,
N.
,
Carneiro
,
J.
,
Campos
,
J. B. L. M.
, and
Miranda
,
J. M.
,
2019
, “
Geometrical Effects in the Hemodynamics of Stenotic and Non-Stenotic Left Coronary Arteries—Numerical and In Vitro Approaches
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
8
), p.
e3207
.10.1002/cnm.3207
44.
Frydrychowicz
,
A.
,
Stalder
,
A. F.
,
Russe
,
M. F.
,
Bock
,
J.
,
Bauer
,
S.
,
Harloff
,
A.
,
Berger
,
A.
,
Langer
,
M.
,
Hennig
,
J.
, and
Markl
,
M.
,
2009
, “
Three-Dimensional Analysis of Segmental Wall Shear Stress in the Aorta by Flow-Sensitive Four-Dimensional-MRI
,”
JMRI
,
30
(
1
), pp.
77
84
.10.1002/jmri.21790
45.
Alimohammadi
,
M.
,
Sherwood
,
J.
,
Karimpour
,
M.
,
Agu
,
O.
,
Balabani
,
S.
, and
Díaz-Zuccarini
,
V.
,
2015
, “
Aortic Dissection Simulation Models for Clinical Support: Fluid-Structure Interaction Vs. Rigid Wall Models
,”
Biomed. Eng. Online
,
14
(
1
), p.
34
.10.1186/s12938-015-0032-6
46.
Park
,
S.
,
Lee
,
S.-W.
,
Lim
,
O. K.
,
Min
,
I.
,
Nguyen
,
M.
,
Ko
,
Y. B.
,
Yoon
,
K.
, and
Suh
,
D. C.
,
2013
, “
Computational Modeling With Fluid-Structure Interaction of the Severe M1 Stenosis Before and After Stenting
,”
Neurointervention
,
8
(
1
), pp.
23
28
.10.5469/neuroint.2013.8.1.23
47.
Geoghegan
,
P. H.
,
Jermy
,
M. C.
, and
Nobes
,
D. S.
,
2017
, “
A PIV Comparison of the Flow Field and Wall Shear Stress in Rigid and Compliant Models of Healthy Carotid Arteries
,”
J. Mech. Med. Biol.
,
17
(
3
), p.
1750041
.10.1142/S0219519417500415
48.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2016
, “
Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
014503
.10.1115/1.4032056
49.
Fytanidis
,
D.
,
Soulis
,
J.
, and
Giannoglou
,
G.
,
2014
, “
Patient-Specific Arterial System Flow Oscillation
,”
Hippokratia
,
18
(
2
), pp.
162
165
.https://pubmed.ncbi.nlm.nih.gov/25336881/
50.
Goldfinger
,
J. Z.
,
Halperin
,
J. L.
,
Marin
,
M. L.
,
Stewart
,
A. S.
,
Eagle
,
K. A.
, and
Fuster
,
V.
,
2014
, “
Thoracic Aortic Aneurysm and Dissection
,”
J. Am. Coll. Cardiol.
,
64
(
16
), pp.
1725
1739
.10.1016/j.jacc.2014.08.025
51.
Finol
,
E. A.
, and
Amon
,
C. H.
,
2001
, “
Blood Flow in Abdominal Aortic Aneurysms: Pulsatile Flow Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
474
484
.10.1115/1.1395573
52.
Suh
,
G.-Y.
,
Les
,
A. S.
,
Tenforde
,
A. S.
,
Shadden
,
S. C.
,
Spilker
,
R. L.
,
Yeung
,
J. J.
,
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2011
, “
Hemodynamic Changes Quantified in Abdominal Aortic Aneurysms With Increasing Exercise Intensity Using MR Exercise Imaging and Image-Based Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2186
2202
.10.1007/s10439-011-0313-6
53.
Yu
,
S. C. M.
, and
Zhao
,
J. B.
,
1999
, “
A Steady Flow Analysis on the Stented and Non-Stented Sidewall Aneurysm Models
,”
Med. Eng. Phys.
,
21
(
3
), pp.
133
141
.10.1016/S1350-4533(99)00037-5
54.
Sandiford
,
P.
,
Mosquera
,
D.
, and
Bramley
,
D.
,
2011
, “
Trends in Incidence and Mortality From Abdominal Aortic Aneurysm in New Zealand
,”
BJS
,
98
(
5
), pp.
645
651
.10.1002/bjs.7461
55.
Qadura
,
M.
,
Pervaiz
,
F.
,
Harlock
,
J. A.
,
Al-Azzoni
,
A.
,
Farrokhyar
,
F.
,
Kahnamoui
,
K.
,
Szalay
,
D. A.
, and
Rapanos
,
T.
,
2013
, “
Mortality and Reintervention Following Elective Abdominal Aortic Aneurysm Repair
,”
J. Vasc. Surg.
,
57
(
6
), pp.
1676
1683.e1671
.10.1016/j.jvs.2013.02.013
56.
Tiessen
,
I. M.
, and
Roach
,
M. R.
,
1993
, “
Factors in the Initiation and Propagation of Aortic Dissections in Human Autopsy Aortas
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
123
125
.10.1115/1.2895461
57.
Iqbal
,
J.
,
Gunn
,
J.
, and
Serruys
,
P. W.
,
2013
, “
Coronary Stents: Historical Development, Current Status and Future Directions
,”
Br. Med. Bull.
,
106
(
1
), pp.
193
211
.10.1093/bmb/ldt009
58.
Singh
,
C.
,
Wang
,
X.
,
Morsi
,
Y.
, and
Wong
,
C.
,
2017
, “
Importance of Stent-Graft Design for Aortic Arch Aneurysm Repair
,”
AIMS Bioeng.
,
4
(
1
), pp.
133
150
.10.3934/bioeng.2017.1.133
59.
Morris
,
L.
,
Stefanov
,
F.
,
Hynes
,
N.
,
Diethrich
,
E. B.
, and
Sultan
,
S.
,
2016
, “
An Experimental Evaluation of Device/Arterial Wall Compliance Mismatch for Four Stent-Graft Devices and a Multi-Layer Flow Modulator Device for the Treatment of Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
51
(
1
), pp.
44
55
.10.1016/j.ejvs.2015.07.041
60.
Selvarasu
,
N. K. C.
,
Tafti
,
D. K.
, and
Vlachos
,
P. P.
,
2011
, “
Hydrodynamic Effects of Compliance Mismatch in Stented Arteries
,”
ASME J. Biomech. Eng.
,
133
(
2
), p.
021008
.10.1115/1.4003319
61.
Aaronson
,
P. I.
,
Ward
,
J. P. T.
, and
Connolly
,
M. J.
,
2012
,
The Cardiovascular System at a Glance
,
Wiley
, Hoboken, NJ.
62.
Gonzalez
,
C. F.
,
Cho
,
Y. I.
,
Ortega
,
H. V.
, and
Moret
,
J.
,
1992
, “
Intracranial Aneurysms: Flow Analysis of Their Origin and Progression
,”
AJNR Am. J. Neuroradiol.
,
13
(
1
), pp.
181
188
.https://pubmed.ncbi.nlm.nih.gov/1595440/
63.
Salameh
,
M. J.
, and
Ratchford
,
E. V.
,
2016
, “
Aortic Dissection
,”
Vasc. Med.
,
21
(
3
), pp.
276
280
.10.1177/1358863X16632898
64.
Mendes
,
B. C.
, and
Oderich
,
G. S.
,
2017
, “
Selection of Optimal Bridging Stents for Fenestrations and Branches
,”
Endovascular Aortic Repair: Current Techniques With Fenestrated, Branched and Parallel Stent-Grafts
,
G. S.
Oderich
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
359
374
.
65.
Anderson
,
J. L.
,
Adam
,
D. J.
,
Berce
,
M.
, and
Hartley
,
D. E.
,
2005
, “
Repair of Thoracoabdominal Aortic Aneurysms With Fenestrated and Branched Endovascular Stent Grafts
,”
J. Vasc. Surg.
,
42
(
4
), pp.
600
607
.10.1016/j.jvs.2005.05.063
66.
Conway
,
C.
,
2018
, “
Coronary Stent Fracture: Clinical Evidence Vs. the Testing Paradigm
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
752
760
.10.1007/s13239-018-00384-0
67.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education
,
New York/Harlow, UK
.
68.
Prakash
,
S.
, and
Ethier
,
C. R.
,
2001
, “
Requirements for Mesh Resolution in 3D Computational Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
134
144
.10.1115/1.1351807
69.
Karanasiou
,
G. S.
,
Papafaklis
,
M. I.
,
Conway
,
C.
,
Michalis
,
L. K.
,
Tzafriri
,
R.
,
Edelman
,
E. R.
, and
Fotiadis
,
D. I.
,
2017
, “
Stents: Biomechanics, Biomaterials, and Insights From Computational Modelling
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
853
872
.10.1007/s10439-017-1806-8
70.
Midulla
,
M.
,
Moreno
,
R.
,
Baali
,
A.
,
Chau
,
M.
,
Negre-Salvayre
,
A.
,
Nicoud
,
F.
,
Pruvo
,
J.-P.
,
Haulon
,
S.
, and
Rousseau
,
H.
,
2012
, “
Haemodynamic Imaging of Thoracic Stent-Grafts by Computational Fluid Dynamics (CFD): Presentation of a Patient-Specific Method Combining Magnetic Resonance Imaging and Numerical Simulations
,”
Eur. Radiol.
,
22
(
10
), pp.
2094
2102
.10.1007/s00330-012-2465-7
71.
Morlacchi
,
S.
, and
Migliavacca
,
F.
,
2013
, “
Modeling Stented Coronary Arteries: Where We Are, Where to Go
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1428
1444
.10.1007/s10439-012-0681-6
72.
Cheng
,
C. P.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2003
, “
Abdominal Aortic Hemodynamic Conditions in Healthy Subjects Aged 50–70 at Rest and During Lower Limb Exercise: In Vivo Quantification Using MRI
,”
Atherosclerosis
,
168
(
2
), pp.
323
331
.10.1016/S0021-9150(03)00099-6
73.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
,
1999
, “
Effect of Exercise on Hemodynamic Conditions in the Abdominal Aorta
,”
J. Vasc. Surg.
,
29
(
6
), pp.
1077
1089
.10.1016/S0741-5214(99)70249-1
74.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.10.1007/s10439-010-9949-x
75.
Tang
,
B. T.
,
Cheng
,
C. P.
,
Draney
,
M. T.
,
Wilson
,
N. M.
,
Tsao
,
P. S.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2006
, “
Abdominal Aortic Hemodynamics in Young Healthy Adults at Rest and During Lower Limb Exercise: Quantification Using Image-Based Computer Modeling
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
291
(
2
), pp.
H668
H676
.10.1152/ajpheart.01301.2005
76.
Hütter
,
L.
,
Geoghegan
,
P. H.
,
Docherty
,
P. D.
,
Lazarjan
,
M. S.
,
Clucas
,
D.
, and
Jermy
,
M.
,
2015
, “
Application of a Meta-Analysis of Aortic Geometry to the Generation of a Compliant Phantom for Use in Particle Image Velocimetry Experimentation
,”
IFAC-PapersOnLine
,
48
(
20
), pp.
407
412
.10.1016/j.ifacol.2015.10.174
77.
Mendez
,
V.
,
Marzio Di
,
G.
, and
Pasta
,
S.
,
2018
, “
Comparison of Hemodynamic and Structural Indices of Ascending Thoracic Aortic Aneurysm as Predicted by 2-Way FSI, CFD Rigid Wall Simulation and Patient-Specific Displacement-Based FEA
,”
Comput. Biol. Med.
,
100
, pp.
221
229
.10.1016/j.compbiomed.2018.07.013
78.
Beier
,
S.
,
Ormiston
,
J.
,
Webster
,
M.
,
Cater
,
J.
,
Norris
,
S.
,
Medrano-Gracia
,
P.
,
Young
,
A.
, and
Cowan
,
B.
,
2016
, “
Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
315
329
.10.1007/s10439-015-1387-3
79.
Tan
,
F. P. P.
,
Torii
,
R.
,
Borghi
,
A.
,
Mohiaddin
,
R. H.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
,
2009
, “
Fluid-Structure Interaction Analysis of Wall Stress and Flow Patterns in a Thoracic Aortic Aneurysm
,”
Int. J. Appl. Mech.
,
01
(
1
), pp.
179
199
.10.1142/S1758825109000095
80.
Cebral
,
J. R.
,
Mut
,
F.
,
Gade
,
P.
,
Cheng
,
F.
,
Tobe
,
Y.
,
Frosen
,
J.
, and
Robertson
,
A. M.
,
2018
, “
Combining Data From Multiple Sources to Study Mechanisms of Aneurysm Disease: Tools and Techniques
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
11
), p.
e3133
.10.1002/cnm.3133
81.
Prasad
,
A.
,
Xiao
,
N.
,
Gong
,
X.-Y.
,
Zarins
,
C. K.
, and
Figueroa
,
C. A.
,
2013
, “
A Computational Framework for Investigating the Positional Stability of Aortic Endografts
,”
Biomech. Model. Mechanobiol.
,
12
(
5
), pp.
869
887
.10.1007/s10237-012-0450-3
82.
Prasad
,
A.
,
To
,
L. K.
,
Gorrepati
,
M. L.
,
Zarins
,
C. K.
, and
Figueroa
,
C. A.
,
2011
, “
Computational Analysis of Stresses Acting on Intermodular Junctions in Thoracic Aortic Endografts
,”
J. Endovasc. Ther.
,
18
(
4
), pp.
559
568
.10.1583/11-3472.1
83.
Marzo
,
A.
,
Singh
,
P.
,
Reymond
,
P.
,
Stergiopulos
,
N.
,
Patel
,
U.
, and
Hose
,
R.
,
2009
, “
Influence of Inlet Boundary Conditions on the Local Haemodynamics of Intracranial Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
431
444
.10.1080/10255840802654335
84.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
,
2005
, “
Circumferential Vascular Deformation After Stent Implantation Alters Wall Shear Stress Evaluated With Time-Dependent 3D Computational Fluid Dynamics Models
,”
J. Appl. Physiol.
,
98
(
3
), pp.
947
957
.10.1152/japplphysiol.00872.2004
85.
Bulusu
,
K. V.
, and
Plesniak
,
M. W.
,
2016
, “
Experimental Investigation of Secondary Flow Structures Downstream of a Model Type IV Stent Failure in a 180 °Curved Artery Test Section
,”
J. Visualized Exp.
, 2016(113).10.3791/51288
86.
Marzo
,
A.
,
Singh
,
P.
,
Larrabide
,
I.
,
Radaelli
,
A.
,
Coley
,
S.
,
Gwilliam
,
M.
,
Wilkinson
,
I. D.
, et al.,
2011
, “
Computational Hemodynamics in Cerebral Aneurysms: The Effects of Modeled Versus Measured Boundary Conditions
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
884
896
.10.1007/s10439-010-0187-z
87.
Stein
,
P. D.
, and
Sabbah
,
H. N.
,
1976
, “
Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves
,”
Circ. Res.
,
39
(
1
), pp.
58
65
.10.1161/01.RES.39.1.58
88.
Jhunjhunwala
,
P.
,
Padole
,
P. M.
,
Thombre
,
S. B.
, and
Sane
,
A.
,
2018
, “
Prediction of Blood Pressure and Blood Flow in Stenosed Renal Arteries Using CFD
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
346
, p.
012066
.10.1088/1757-899X/346/1/012066
89.
Lam
,
S. K.
,
Fung
,
G. S. K.
,
Cheng
,
S. W. K.
, and
Chow
,
K. W.
,
2008
, “
A Computational Study on the Biomechanical Factors Related to Stent-Graft Models in the Thoracic Aorta
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1129
1138
.10.1007/s11517-008-0361-8
90.
Lu
,
Y.-H.
,
Mani
,
K.
,
Panigrahi
,
B.
,
Hsu
,
W.-T.
, and
Chen
,
C.-Y.
,
2016
, “
Endoleak Assessment Using Computational Fluid Dynamics and Image Processing Methods in Stented Abdominal Aortic Aneurysm Models
,”
Comput. Math. Methods Med.
,
2016
, p.
9567294
.10.1155/2016/9567294
91.
Klabunde
,
R. E.
,
2012
,
Cardiovascular Physiology Concepts
, 2nd ed.,
Lippincott Williams & Wilkins/Wolters Kluwer
,
Philadelphia, PA
.
92.
DeMaria
,
A. N.
,
Bommer
,
W.
,
Neumann
,
A.
,
Weinert
,
L.
,
Bogren
,
H.
, and
Mason
,
D. T.
,
1979
, “
Identification and Localization of Aneurysms of the Ascending Aorta by Cross-Sectional Echocardiography
,”
Circulation
,
59
(
4
), pp.
755
761
.10.1161/01.CIR.59.4.755
93.
Numata
,
S.
,
Itatani
,
K.
,
Kanda
,
K.
,
Doi
,
K.
,
Yamazaki
,
S.
,
Morimoto
,
K.
,
Manabe
,
K.
,
Ikemoto
,
K.
, and
Yaku
,
H.
,
2016
, “
Blood Flow Analysis of the Aortic Arch Using Computational Fluid Dynamics
,”
Eur. J. Cardio-Thorac. Surg.
,
49
(
6
), pp.
1578
1585
.10.1093/ejcts/ezv459
94.
Seshadhri
,
S.
,
Janiga
,
G.
,
Beuing
,
O.
,
Skalej
,
M.
, and
Thévenin
,
D.
,
2011
, “
Impact of Stents and Flow Diverters on Hemodynamics in Idealized Aneurysm Models
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071005
.10.1115/1.4004410
95.
Martinez
,
A. W.
, and
Chaikof
,
E. L.
,
2011
, “
Microfabrication and Nanotechnology in Stent Design
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
,
3
(
3
), pp.
256
268
.10.1002/wnan.123
96.
Xing
,
R.
,
Moerman
,
A. M.
,
Ridwan
,
Y.
,
Daemen
,
M. J.
,
van der Steen
,
A. F. W.
,
Gijsen
,
F. J. H.
, and
van der Heiden
,
K.
,
2018
, “
Temporal and Spatial Changes in Wall Shear Stress During Atherosclerotic Plaque Progression in Mice
,”
R. Soc. Open Sci.
,
5
(
3
), p.
171447
.10.1098/rsos.171447
97.
Avrahami
,
I.
,
Brand
,
M.
,
Meirson
,
T.
,
Ovadia-Blechman
,
Z.
, and
Halak
,
M.
,
2012
, “
Hemodynamic and Mechanical Aspects of Fenestrated Endografts for Treatment of Abdominal Aortic Aneurysm
,”
Eur. J. Mech. - B/Fluids
,
35
, pp.
85
91
.10.1016/j.euromechflu.2012.03.010
98.
Sun
,
Z.
, and
Chaichana
,
T.
,
2010
, “
Fenestrated Stent Graft Repair of Abdominal Aortic Aneurysm: Hemodynamic Analysis of the Effect of Fenestrated Stents on the Renal Arteries
,”
Korean J. Radiol.
,
11
(
1
), pp.
95
106
.10.3348/kjr.2010.11.1.95
99.
Kandail
,
H. S.
,
Hamady
,
M.
, and
Xu
,
X. Y.
,
2016
, “
Hemodynamic Functions of Fenestrated Stent Graft Under Resting, Hypertension, and Exercise Conditions
,”
Front. Surg.
,
3
, p.
35
.10.3389/fsurg.2016.00035
100.
Kandail
,
H.
,
Hamady
,
M.
, and
Xu
,
X. Y.
,
2015
, “
Comparison of Blood Flow in Branched and Fenestrated Stent-Grafts for Endovascular Repair of Abdominal Aortic Aneurysms
,”
J. Endovasc. Ther.
,
22
(
4
), pp.
578
590
.10.1177/1526602815587261
101.
Shakeri
,
M.
,
Khodarahmi
,
I.
,
Sharp
,
M. K.
, and
Amini
,
A. A.
,
2010
, “
Optical Imaging of Steady Flow in a Phantom Model of Iliac Artery Stenosis: Comparison of CFD Simulations With PIV Measurements
,”
Proc. SPIE
,
7626
, p.
76260L
.10.1117/12.846324
102.
Iaccarino
,
G.
, and
Elkins
,
C.
,
2006
, “
Towards Rapid Analysis of Turbulent Flows in Complex Internal Passages
,”
Flow, Turbul. Combust.
,
77
(
1–4
), pp.
27
39
.10.1007/s10494-006-9035-5
103.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
, 3rd ed.,
Springer International Publishing
,
Cham, Switzerland
.
104.
TSI Incorporated
,
2017
, “
Insight 4G™ Global Image, Acquisition, Analysis, & Display Software User Guide
,”
TSI
, Shoreview, MN.
105.
Wendt
,
D.
,
Stühle
,
S.
,
Hou
,
G.
,
Thielmann
,
M.
,
Tsagakis
,
K.
,
Wendt
,
H.
,
Jakob
,
H.
, and
Kowalczyk
,
W.
,
2011
, “
Development and In Vitro Characterization of a New Artificial Flow Channel
,”
Artif. Organs
,
35
(
3
), pp.
E59
E64
.10.1111/j.1525-1594.2010.01166.x
106.
Minakawa
,
M.
,
Fukuda
,
I.
,
Inamura
,
T.
,
Yanaoka
,
H.
,
Fukui
,
K.
,
Daitoku
,
K.
,
Suzuki
,
Y.
, and
Hashimoto
,
H.
,
2008
, “
Hydrodynamic Evaluation of Axillary Artery Perfusion for Normal and Diseased Aorta
,”
Gen. Thorac. Cardiovasc. Surg.
,
56
(
5
), pp.
215
221
.10.1007/s11748-008-0234-y
107.
Rhee
,
K.
,
Han
,
M. H.
, and
Cha
,
S. H.
,
2002
, “
Changes of Flow Characteristics by Stenting in Aneurysm Models: Influence of Aneurysm Geometry and Stent Porosity
,”
Ann. Biomed. Eng.
,
30
(
7
), pp.
894
904
.10.1114/1.1500406
108.
Geoghegan
,
P.
,
Buchmann
,
N.
,
Spence
,
C.
,
Moore
,
S.
, and
Jermy
,
M.
,
2012
, “
Fabrication of Rigid and Flexible Refractive-Index-Matched Flow Phantoms for Flow Visualisation and Optical Flow Measurements
,”
Exp. Fluids
,
52
(
5
), pp.
1331
1347
.10.1007/s00348-011-1258-0
109.
Yazdi
,
S. G.
,
Docherty
,
P.
,
Khanafer
,
A.
,
Jermy
,
M.
,
Geoghegan
,
P. H.
,
Kabaliuk
, N., and
Williamson
,
P. N.
,
2018
, “
The Flow Field in Compliant and Rigid Models of the Human Aortic Arch
,”
19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
, Lisbon, Portugal, July 16–19, No. 57.
110.
Stehbens
,
W. E.
,
1975
, “
Flow in Glass Models of Arterial Bifurcations and Berry Aneurysms at Low Reynolds Numbers
,”
Q. J. Exp. Physiol. Cogn. Med. Sci.
,
60
(
3
), pp.
181
192
.10.1113/expphysiol.1975.sp002310
111.
Yazdi
,
S. G.
,
Huetter
,
L.
,
Docherty
,
P. D.
,
Williamson
,
P. N.
,
Clucas
,
D.
,
Jermy
,
M.
, and
Geoghegan
,
P. H.
,
2019
, “
A Novel Fabrication Method for Compliant Silicone Phantoms of Arterial Geometry for Use in Particle Image Velocimetry of Haemodynamics
,”
Appl. Sci.
,
9
(
18
), p.
3811
.10.3390/app9183811
112.
Friedman
,
M.
,
Kuban
,
B.
,
Schmalbrock
,
P.
,
Smith
,
K.
, and
Altan
,
T.
,
1995
, “
Fabrication of Vascular Replicas From Magnetic Resonance Images
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
364
366
.10.1115/1.2794193
113.
Spence
,
C. J. T.
,
Buchmann
,
N. A.
,
Jermy
,
M. C.
, and
Moore
,
S. M.
,
2011
, “
Stereoscopic PIV Measurements of Flow in the Nasal Cavity With High Flow Therapy
,”
Exp. Fluids
,
50
(
4
), pp.
1005
1017
.10.1007/s00348-010-0984-z
114.
Friedman
,
M.
,
Bargeron
,
C.
,
Hutchins
,
G.
,
Mark
,
F.
, and
Deters
,
O.
,
1980
, “
Hemodynamic Measurements in Human Arterial Casts, and Their Correlation With Histology and Luminal Area
,”
ASME J. Biomech. Eng.
,
102
(
3
), pp.
247
251
.10.1115/1.3149581
115.
Deters
,
O.
,
Bargeron
,
C.
,
Mark
,
F.
, and
Friedman
,
M.
,
1986
, “
Measurement of Wall Motion and Wall Shear in a Compliant Arterial Cast
,”
ASME J. Biomech. Eng.
,
108
(
4
), pp.
355
358
.10.1115/1.3138628
116.
Büsen
,
M.
,
Arenz
,
C.
,
Neidlin
,
M.
,
Liao
,
S.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
, and
Sonntag
,
S. J.
,
2017
, “
Development of an In Vitro PIV Setup for Preliminary Investigation of the Effects of Aortic Compliance on Flow Patterns and Hemodynamics
,”
Cardiovasc. Eng. Technol.
,
8
(
3
), pp.
368
377
.10.1007/s13239-017-0309-y
117.
Friedman
,
M. H.
,
Hutchins
,
G. M.
,
Brent Bargeron
,
C.
,
Deters
,
O. J.
, and
Mark
,
F. F.
,
1981
, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
,
39
(
3
), pp.
425
436
.10.1016/0021-9150(81)90027-7
118.
Kefayati
,
S.
,
Milner
,
J. S.
,
Holdsworth
,
D. W.
, and
Poepping
,
T. L.
,
2014
, “
In Vitro Shear Stress Measurements Using Particle Image Velocimetry in a Family of Carotid Artery Models: Effect of Stenosis Severity, Plaque Eccentricity, and Ulceration
,”
PLoS One
,
9
(
7
), p.
e98209
.10.1371/journal.pone.0098209
119.
Geoghegan
,
P. H.
,
Buchmann
,
N. A.
,
Soria
,
J.
, and
Jermy
,
M. C.
,
2013
, “
Time-Resolved PIV Measurements of the Flow Field in a Stenosed, Compliant Arterial Model
,”
Exp. Fluids
,
54
(
5
), p.
1528
.10.1007/s00348-013-1528-0
120.
Deplano
,
V.
,
Guivier-Curien
,
C.
, and
Bertrand
,
E.
,
2016
, “
3D Analysis of Vortical Structures in an Abdominal Aortic Aneurysm by Stereoscopic PIV
,”
Exp. Fluids
,
57
(
11
), p.
167
.10.1007/s00348-016-2263-0
121.
Huetter
,
L.
,
Geoghegan
,
P. H.
,
Docherty
,
P. D.
,
Lazarjan
,
M. S.
,
Clucas
,
D.
, and
Jermy
,
M.
,
2016
, “
Fabrication of a Compliant Phantom of the Human Aortic Arch for Use in Particle Image Velocimetry (PIV) Experimentation
,”
Curr. Dir. Biomed. Eng.
,
2
(
1
), pp.
493
497
.10.1515/cdbme-2016-0109
122.
Duncan
,
D.
,
Bargeron
,
C.
,
Borchardt
,
S.
,
Deters
,
O.
,
Gearhart
,
S.
,
Mark
,
F.
, and
Friedman
,
M.
,
1990
, “
The Effect of Compliance on Wall Shear in Casts of a Human Aortic Bifurcation
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
183
188
.10.1115/1.2891170
123.
Bouillot
,
P.
,
Brina
,
O.
,
Ouared
,
R.
,
Lovblad
,
K.-O.
,
Farhat
,
M.
, and
Pereira
,
V. M.
,
2014
, “
Particle Imaging Velocimetry Evaluation of Intracranial Stents in Sidewall Aneurysm: Hemodynamic Transition Related to the Stent Design
,”
PLoS One
,
9
(
12
), p.
e113762
.10.1371/journal.pone.0113762
124.
Foucault
,
E.
,
Huberson
,
S.
,
Braud
,
P.
, and
Coisne
,
D.
,
2017
, “
On the Pulsatile Flow Through a Coronary Bifurcation With Stent
,”
Eur. J. Mech. - B/Fluids
,
61
, pp.
177
186
.10.1016/j.euromechflu.2016.11.007
125.
Yu
,
C.-H.
,
Matsumoto
,
K.
,
Shida
,
S.
,
Kim
,
D. J.
, and
Ohta
,
M.
,
2012
, “
A Steady Flow Analsys on a Cerebral Aneurysm Model With Several Stents for New Stent Design Using PIV
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1333
1340
.10.1007/s12206-012-0322-x
126.
Dennis
,
K. D.
,
Rossman
,
T. L.
,
Kallmes
,
D. F.
, and
Dragomir-Daescu
,
D.
,
2015
, “
Intra-Aneurysmal Flow Rates Are Reduced by Two Flow Diverters: An Experiment Using Tomographic Particle Image Velocimetry in an Aneurysm Model
,”
J. NeuroInterventional Surg.
,
7
(
12
), pp.
937
942
.10.1136/neurintsurg-2014-011323
127.
Liu
,
M.
,
Sun
,
A.
, and
Deng
,
X.
,
2018
, “
Numerical and Experimental Investigation of the Hemodynamic Performance of Bifurcated Stent Grafts With Various Torsion Angles
,”
Sci. Rep.
,
8
(
1
), p.
12625
.10.1038/s41598-018-31015-2
128.
Lei
,
Y.
,
Chen
,
X.
,
Li
,
Z.
,
Zhang
,
L.
,
Sun
,
W.
,
Li
,
L.
, and
Tang
,
F.
,
2020
, “
A New Process for Customized Patient-Specific Aortic Stent Graft Using 3D Printing Technique
,”
Med. Eng. Phys.
,
77
, pp.
80
87
.10.1016/j.medengphy.2019.12.002
129.
Groot Jebbink
,
E.
,
Mathai
,
V.
,
Boersen
,
J. T.
,
Sun
,
C.
,
Slump
,
C. H.
,
Goverde
,
P. C. J. M.
,
Versluis
,
M.
, and
Reijnen
,
M. M. P. J.
,
2017
, “
Hemodynamic Comparison of Stent Configurations Used for Aortoiliac Occlusive Disease
,”
J. Vasc. Surg.
,
66
(
1
), pp.
251
260.e251
.10.1016/j.jvs.2016.07.128
130.
Deplano
,
V.
,
Knapp
,
Y.
,
Bertrand
,
E.
, and
Gaillard
,
E.
,
2007
, “
Flow Behaviour in an Asymmetric Compliant Experimental Model for Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
11
), pp.
2406
2413
.10.1016/j.jbiomech.2006.11.017
131.
Dillon-Murphy
,
D.
,
Noorani
,
A.
,
Nordsletten
,
D.
, and
Figueroa
,
C. A.
,
2016
, “
Multi-Modality Image-Based Computational Analysis of Haemodynamics in Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
15
(
4
), pp.
857
876
.10.1007/s10237-015-0729-2
132.
Romarowski
,
R. M.
,
Lefieux
,
A.
,
Morganti
,
S.
,
Veneziani
,
A.
, and
Auricchio
,
F.
,
2018
, “
Patient‐Specific CFD Modelling in the Thoracic Aorta With PC‐MRI–Based Boundary Conditions: A Least‐Square Three‐Element Windkessel Approach
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
11
), p.
e3134
.10.1002/cnm.3134
133.
Guarini
,
M.
,
Urzua
,
J.
,
Cipriano
,
A.
, and
Gonzalez
,
W.
,
1998
, “
Estimation of Cardiac Function From Computer Analysis of the Arterial Pressure Waveform
,”
IEEE Trans. Biomed. Eng.
,
45
(
12
), pp.
1420
1428
.10.1109/10.730436
134.
Moreno
,
R.
,
Chau
,
M.
,
Tayllamin
,
B.
,
Rousseau
,
H.
, and
Nicoud
,
F.
,
2009
, “
Correct Rheology Simulation on Compliant Thoracic Aorta Model: Comparison Between CFD and MRI Velocity Measurements
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
Suppl. 1
), pp.
195
196
.10.1080/10255840903091551
135.
Dwidmuthe
,
P.
,
Mathpati
,
C. S.
, and
Joshi
,
J. B.
,
2018
, “
CFD Simulation of Blood Flow Inside the Human Artery: Aorta
,” 45th National Conference on Fluid Mechanics and Fluid Power (
FMFP
), Bombay, India, Dec. 10–12, No. 679.https://www.researchgate.net/publication/330900048_CFD_Simulation_of_Blood_Flow_inside_the_Human_Artery_Aorta
136.
Pahakis
,
M. Y.
,
Kosky
,
J. R.
,
Dull
,
R. O.
, and
Tarbell
,
J. M.
,
2007
, “
The Role of Endothelial Glycocalyx Components in Mechanotransduction of Fluid Shear Stress
,”
Biochem. Biophys. Res. Commun.
,
355
(
1
), pp.
228
233
.10.1016/j.bbrc.2007.01.137
137.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
De Cobelli
,
F.
,
Del Maschio
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2009
, “
Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
516
531
.10.1007/s10439-008-9609-6
138.
Nicoud
,
F.
, and
Schönfeld
,
T.
,
2002
, “
Integral Boundary Conditions for Unsteady Biomedical CFD Applications
,”
Int. J. Numer. Methods Fluids
,
40
(
3–4
), pp.
457
465
.10.1002/fld.299
139.
Westerhof
,
N.
,
Lankhaar
,
J.-W.
, and
Westerhof
,
B. E.
,
2009
, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
,
47
(
2
), pp.
131
141
.10.1007/s11517-008-0359-2
140.
Stergiopulos
,
N.
,
Westerhof
,
B. E.
, and
Westerhof
,
N.
,
1999
, “
Total Arterial Inertance as the Fourth Element of the Windkessel Model
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
276
(
1
), pp.
H81
H88
.10.1152/ajpheart.1999.276.1.H81
141.
Alishahi
,
M.
,
Alishahi
,
M. M.
, and
Emdad
,
H.
,
2011
, “
Numerical Simulation of Blood Flow in a Flexible Stenosed Abdominal Real Aorta
,”
Sci. Iran.
,
18
(
6
), pp.
1297
1305
.10.1016/j.scient.2011.11.021
142.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Lovik
,
R. D.
,
2008
, “
Unsteady, Three-Dimensional Fluid Mechanic Analysis of Blood Flow in Plaque-Narrowed and Plaque-Freed Arteries
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5633
5641
.10.1016/j.ijheatmasstransfer.2008.04.038
143.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5685
5706
.10.1016/j.cma.2005.11.011
144.
Xu
,
J.
,
Wu
,
Z.
,
Yu
,
Y.
,
Lv
,
N.
,
Wang
,
S.
,
Karmonik
,
C.
,
Liu
,
J.-M.
, and
Huang
,
Q.
,
2015
, “
Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study
,”
PLoS One
,
10
(
9
), p.
e0138648
.10.1371/journal.pone.0138648
145.
Yazdi
,
S. G.
,
Docherty
,
P. D.
,
Khanafer
,
A.
,
Jermy
,
M.
,
Geoghegan
,
P. H.
,
Kabaliuk
,
N.
, and
Williamson
,
P. N.
,
2019
, “
In-Vitro Measurement of Hemodynamics in Rigid and Compliant Silicone Replicas of Aortic Arch Using Stereoscopic Particle Image Velocimetry
,” 7th NZ Fluid Mechanics Conference 2019
, Fluids in New Zealand (FiNZ),
F.
Montiel, ed.
,
Dunedin, New Zealand
, Jan. 31–Feb. 1, No. 29.
146.
Zamir
,
M.
,
2000
,
The Physics of Pulsatile Flow
,
AIP Press
,
New York
.
147.
Les
,
A. S.
,
Yeung
,
J. J.
,
Schultz
,
G. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Supraceliac and Infrarenal Aortic Flow in Patients With Abdominal Aortic Aneurysms: Mean Flows, Waveforms, and Allometric Scaling Relationships
,”
Cardiovasc. Eng. Technol.
,
1
(
1
), pp.
39
51
.10.1007/s13239-010-0004-8
148.
Docherty
,
P. D.
,
Sellier
,
M.
,
Geoghegan
,
P. H.
,
Yazdi
,
S.
,
Williamson
,
P. N.
,
Khanafer
,
A.
,
Kabaliuk
,
N.
, and
Jermy
,
M.
,
2019
, “
Integral-Based Reconstruction of Static Pressure in a Compliant Axisymmetric Vessel Using Velocity Field Data From Particle Image Velocimetry (PIV) Analysis
,” 7th NZ Fluid Mechanics Conference 2019,
Fluids in New Zealand (FiNZ)
,
F.
Montiel
, ed.,
Dunedin, New Zealand
, Jan. 31–Feb. 1, No. 30.
149.
Weizsacker
,
H. W.
, and
Pinto
,
J. G.
,
1988
, “
Isotropy and Anisotropy of the Arterial Wall
,”
J. Biomech.
,
21
(
6
), pp.
477
487
.10.1016/0021-9290(88)90240-0
150.
Han
,
M.-W.
,
Rodrigue
,
H.
,
Cho
,
S.
,
Song
,
S.-H.
,
Wang
,
W.
,
Chu
,
W.-S.
, and
Ahn
,
S.-H.
,
2016
, “
Woven Type Smart Soft Composite for Soft Morphing Car Spoiler
,”
Compos. Part B: Eng.
,
86
, pp.
285
298
.10.1016/j.compositesb.2015.10.009
151.
Williamson
,
P. N.
,
Docherty
,
P. D.
,
Yazdi
,
S. G.
,
Jermy
,
M.
,
Khanafer
,
A.
,
Kabaliuk
,
N.
, and
Geoghegan
,
P. H.
,
2019
, “
PIV Analysis of Stented Haemodynamics in the Descending Aorta
,” 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (
EMBC
),
O.
Dössel
, ed.,
Berlin
, Germany, July 23–27, pp.
4737
4740
.10.1109/EMBC.2019.8856823
152.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
.
153.
McDonald
,
D. A.
,
1974
,
Blood Flow in Arteries
,
2
nd ed.,
U6 Arnold
,
London, UK
.
154.
Fedosov
,
D. A.
,
Pan
,
W.
,
Caswell
,
B.
,
Gompper
,
G.
, and
Karniadakis
,
G. E.
,
2011
, “
Predicting Human Blood Viscosity In Silico
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
29
), pp.
11772
11777
.10.1073/pnas.1101210108
155.
Shimogaito
,
K.
,
Ohara
,
K.
,
Ichikawa
,
A.
,
Kubo
,
T.
, and
Fukuda
,
T.
,
2016
, “
The Study of Valved Hybrid Fractal Stent for the Next Generation Medical Care—The Blood Flow Simulation in Cerebral Aneurysm by CFD
,”
2016 International Symposium on Micro-NanoMechatronics and Human Science
(
MHS
), Nagoya, Japan, Nov. 28–30, pp.
1
3
.10.1109/MHS.2016.7824203
156.
Williamson
,
P. N.
,
Yazdi
,
S. G.
,
Khanafer
,
A.
,
Docherty
,
P. D.
,
Geoghegan
,
P. H.
,
Kabaliuk
,
N.
, and
Jermy
,
M.
,
2019
, “
Particle Image Velocimetry (PIV) Analysis of Haemodynamics Distal of a Frozen Elephant Trunk Stent Phantom
,” 7th NZ Fluid Mechanics Conference 2019,
Fluids in New Zealand
,
F.
Montiel
, ed.,
Dunedin
,
New Zealand
, Jan. 31–Feb. 1, No. 31.
157.
Arzani
,
A.
,
2018
, “
Accounting for Residence-Time in Blood Rheology Models: Do We Really Need Non-Newtonian Blood Flow Modelling in Large Arteries?
,”
J. R. Soc. Interface
,
15
(
146
), p.
20180486
.10.1098/rsif.2018.0486
158.
Lee
,
S.-W.
, and
Steinman
,
D. A.
,
2007
, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
273
278
.10.1115/1.2540836
159.
Liu
,
X.
,
Fan
,
Y.
,
Deng
,
X.
, and
Zhan
,
F.
,
2011
, “
Effect of Non-Newtonian and Pulsatile Blood Flow on Mass Transport in the Human Aorta
,”
J. Biomech.
,
44
(
6
), pp.
1123
1131
.10.1016/j.jbiomech.2011.01.024
160.
Friedman
,
M.
,
Bargeron
,
C.
,
Duncan
,
D.
,
Hutchins
,
G.
, and
Mark
,
F.
,
1992
, “
Effects of Arterial Compliance and Non-Newtonian Rheology on Correlations Between Intimal Thickness and Wall Shear
,”
ASME J. Biomech. Eng.
,
114
(
3
), pp.
317
320
.10.1115/1.2891389
161.
Caro
,
C. G.
,
2012
,
The Mechanics of the Circulation
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK/New York
.
162.
Brindise
,
M. C.
,
Busse
,
M. M.
, and
Vlachos
,
P. P.
,
2018
, “
Density and Viscosity Matched Newtonian and Non-Newtonian Blood-Analog Solutions With PDMS Refractive Index
,”
Exp. Fluids
,
59
(
11
), p.
173
.10.1007/s00348-018-2629-6
You do not currently have access to this content.