Abstract

The knee adduction moment is associated with the progression of knee osteoarthritis (OA). The adduction moment reflects the net effect of muscles, passive tissues and bone-on-bone contact forces. Medial compartment OA is more common than lateral and therefore our ability to correctly partition bone-on-bones forces across the medial and lateral compartments is key to understanding mechanical factors associated with the onset and progression of knee OA. In this technical brief we present an efficient one-step moment balancing algorithm linking the sagittal and frontal planes in the determination of musculotendon forces. Novel to the one-step approach is the introduction of a penalty function limiting total compressive force from acting in the lateral compartment when the internal moment is net abduction (i.e., external knee adduction). Medial and lateral knee contact forces were computed using the one-step moment balancing algorithm for 10 subjects walking at a self-selected pace and compared to values determined using a well-established two-step frontal moment balancing approach. Overall, average peak differences in magnitude and timing were small and the ensemble-averaged contact force profiles were similar between methods. The only statistical difference was slightly larger (0.2 BWs) peak medial contact force for the one-step method during the first half of stance, however these differences are small relative to peak values and would not likely alter interpretation of the data. The 1-step moment balancing method is a more efficient methodology for computing medial and lateral knee contact forces that can be used in place of two-step frontal plane moment balancing.

References

1.
Andriacchi
,
T. P.
, and
Mundermann
,
A.
,
2006
, “
The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis
,”
Curr. Opin. Rheumatol.
,
18
(
5
), pp.
514
518
.10.1097/01.bor.0000240365.16842.4e
2.
Baliunas
,
A. J.
,
Hurwitz
,
D. E.
,
Ryals
,
A. B.
,
Karrar
,
A.
,
Case
,
J. P.
,
Block
,
J. A.
, and
Andriacchi
,
T. P.
,
2002
, “
Increased Knee Joint Loads During Walking Are Present in Subjects With Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
10
(
7
), pp.
573
579
.10.1053/joca.2002.0797
3.
Felson
,
D. T.
,
2013
, “
Osteoarthritis as a Disease of Mechanics
,”
Osteoarthritis Cartilage
,
21
(
1
), pp.
10
15
.10.1016/j.joca.2012.09.012
4.
Sharma
,
L.
,
Hurwitz
,
D. E.
,
Thonar
,
E. J.
,
Sum
,
J. A.
,
Lenz
,
M. E.
,
Dunlop
,
D. D.
,
Schnitzer
,
T. J.
,
Kirwan-Mellis
,
G.
, and
Andriacchi
,
T. P.
,
1998
, “
Knee Adduction Moment, Serum Hyaluronan Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis
,”
Arthritis Rheum.
,
41
(
7
), pp.
1233
1240
.10.1002/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L
5.
Wei
,
J.
,
Gross
,
D.
,
Lane
,
N. E.
,
Lu
,
N.
,
Wang
,
M.
,
Zeng
,
C.
,
Yang
,
T.
,
Lei
,
G.
,
Choi
,
H. K.
, and
Zhang
,
Y.
,
2019
, “
Risk Factor Heterogeneity for Medial and Lateral Compartment Knee Osteoarthritis: Analysis of Two Prospective Cohorts
,”
Osteoarthritis Cartilage
,
27
(
4
), pp.
603
610
.10.1016/j.joca.2018.12.013
6.
Andriacchi
,
T. P.
,
Natarajan
,
R. N.
, and
Hurwitz
,
D. E.
,
1997
, “
Musculoskeletal Dynamics, Locomotion, and Clinical Applications
,”
Basic Orthopaedic Biomechanics
,
V. C.
Mow
, and
W. C.
Hayes
, eds.,
Lippincott-Raven Publishers
,
Philadelphia, PA
, pp.
37
68
.
7.
Walter
,
J. P.
,
Korkmaz
,
N.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2015
, “
Contribution of Tibiofemoral Joint Contact to Net Loads at the Knee in Gait
,”
J. Orthop. Res.
,
33
(
7
), pp.
1054
1060
.10.1002/jor.22845
8.
Herzog
,
W.
, and
Longino
,
D.
,
2007
, “
The Role of Muscles in Joint Degeneration and Osteoarthritis
,”
J. Biomech.
,
40
(
Suppl 1
), pp.
S54
63
.10.1016/j.jbiomech.2007.03.001
9.
Moissenet
,
F.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2014
, “
A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait
,”
J. Biomech.
,
47
(
1
), pp.
50
58
.10.1016/j.jbiomech.2013.10.015
10.
Hubley-Kozey
,
C. L.
,
Hill
,
N. A.
,
Rutherford
,
D. J.
,
Dunbar
,
M. J.
, and
Stanish
,
W. D.
,
2009
, “
Co-Activation Differences in Lower Limb Muscles Between Asymptomatic Controls and Those With Varying Degrees of Knee Osteoarthritis During Walking
,”
Clin. Biomech. (Bristol, Avon)
,
24
(
5
), pp.
407
414
.10.1016/j.clinbiomech.2009.02.005
11.
Schmitt
,
L. C.
, and
Rudolph
,
K. S.
,
2007
, “
Influences on Knee Movement Strategies During Walking in persons With medial knee osteoarthritis
,”
Arthritis Rheum.
,
57
(
6
), pp.
1018
1026
.10.1002/art.22889
12.
Tsai
,
L. C.
,
McLean
,
S.
,
Colletti
,
P. M.
, and
Powers
,
C. M.
,
2012
, “
Greater Muscle co-Contraction Results in Increased Tibiofemoral Compressive Forces in Females Who Have Undergone Anterior Cruciate Ligament Reconstruction
,”
J. Orthop. Res.
,
30
(
12
), pp.
2007
2014
.10.1002/jor.22176
13.
Trepczynski
,
A.
,
Kutzner
,
I.
,
Schwachmeyer
,
V.
,
Heller
,
M. O.
,
Pfitzner
,
T.
, and
Duda
,
G. N.
,
2018
, “
Impact of Antagonistic Muscle Co-contraction on In Vivo Knee Contact Forces
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
101
.10.1186/s12984-018-0434-3
14.
Roelker
,
S. A.
,
Caruthers
,
E. J.
,
Hall
,
R. K.
,
Pelz
,
N. C.
,
Chaudhari
,
A. M. W.
, and
Siston
,
R. A.
,
2020
, “
Effects of Optimization Technique on Simulated Muscle Activations and Forces
,”
J. Appl. Biomech.
, 36(4), pp.
1
20
.10.1123/jab.2018-0332
15.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2013
, “
An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021014
.10.1115/1.4023457
16.
Winby
,
C. R.
,
Lloyd
,
D. G.
,
Besier
,
T. F.
, and
Kirk
,
T. B.
,
2009
, “
Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait
,”
J. Biomech.
,
42
(
14
), pp.
2294
2300
.10.1016/j.jbiomech.2009.06.019
17.
Kutzner
,
I.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Bergmann
,
G.
,
2013
, “
Knee Adduction Moment and Medial Contact Force–Facts About Their Correlation During Gait
,”
PLoS One
,
8
(
12
), p.
e81036
.10.1371/journal.pone.0081036
18.
Zhao
,
D.
,
Banks
,
S. A.
,
Mitchell
,
K. H.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
,
2007
, “
Correlation Between the Knee Adduction Torque and Medial Contact Force for a Variety of Gait Patterns
,”
J. Orthop. Res.
,
25
(
6
), pp.
789
797
.10.1002/jor.20379
19.
Zeighami
,
A.
,
Aissaoui
,
R.
, and
Dumas
,
R.
,
2018
, “
Knee Medial and Lateral Contact Forces in a Musculoskeletal Model With Subject-Specific Contact Point Trajectories
,”
J. Biomech.
,
69
, pp.
138
145
.10.1016/j.jbiomech.2018.01.021
20.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2004
, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.10.1123/jab.20.4.367
21.
Buff
,
H. U.
,
Jones
,
L. C.
, and
Hungerford
,
D. S.
,
1988
, “
Experimental Determination of Forces Transmitted Through the Patello-Femoral Joint
,”
J. Biomech.
,
21
(
1
), pp.
17
23
.10.1016/0021-9290(88)90187-X
22.
Powers
,
C. M.
,
Lilley
,
J. C.
, and
Lee
,
T. Q.
,
1998
, “
The Effects of Axial and Multi-Plane Loading of the Extensor Mechanism on the Patellofemoral Joint
,”
Clin. Biomech. (Bristol, Avon)
,
13
(
8
), pp.
616
624
.10.1016/S0268-0033(98)00013-8
23.
van Eijden
,
T. M.
,
Kouwenhoven
,
E.
,
Verburg
,
J.
, and
Weijs
,
W. A.
,
1986
, “
A Mathematical Model of the Patellofemoral Joint
,”
J. Biomech.
,
19
(
3
), pp.
219
229
.10.1016/0021-9290(86)90154-5
24.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
(
1
), pp.
1
10
.10.1016/0021-9290(89)90179-6
25.
Chimera
,
N. J.
,
Benoit
,
D. L.
, and
Manal
,
K.
,
2009
, “
Influence of Electrode Type on Neuromuscular Activation Patterns During Walking in Healthy Subjects
,”
J. Electromyogr. Kinesiol.
,
19
(
6
), pp.
e494
e499
.10.1016/j.jelekin.2009.01.005
26.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
,
Wootten
,
M. E.
,
Gainey
,
J.
,
Gorton
,
G.
, and
Cochran
,
G. V.
,
1989
, “
Repeatability of Kinematic, Kinetic, and Electromyographic Data in Normal Adult Gait
,”
J. Orthop. Res.
,
7
(
6
), pp.
849
860
.10.1002/jor.1100070611
27.
Schmitz
,
A.
,
Silder
,
A.
,
Heiderscheit
,
B.
,
Mahoney
,
J.
, and
Thelen
,
D. G.
,
2009
, “
Differences in Lower-Extremity Muscular Activation During Walking Between Healthy Older and Young Adults
,”
J. Electromyogr. Kinesiol.
,
19
(
6
), pp.
1085
1091
.10.1016/j.jelekin.2008.10.008
28.
Moissenet
,
F.
, and
Dumas
,
R.
,
2017
, “
Individual Contributions of the Lower Limb Muscles to the Position of the Centre of Pressure During Gait
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
suppl 1
), pp.
137
138
.10.1080/10255842.2017.1382899
29.
Gardinier
,
E. S.
,
Manal
,
K.
,
Buchanan
,
T. S.
, and
Snyder-Mackler
,
L.
,
2013
, “
Minimum Detectable Change for Knee Joint Contact Force Estimates Using an EMG-Driven Model
,”
Gait Posture
,
38
(
4
), pp.
1051
1053
.10.1016/j.gaitpost.2013.03.014
30.
Ranganathan
,
P.
,
Pramesh
,
C. S.
, and
Buyse
,
M.
,
2015
, “
Common Pitfalls in Statistical Analysis: Clinical Versus Statistical Significance
,”
Perspect. Clin. Res.
,
6
(
3
), pp.
169
170
.10.4103/2229-3485.159943
You do not currently have access to this content.