Abstract

In this study, a novel reduced degree-of-freedom (rDOF) aortic valve model is employed to investigate the fluid-structure interaction (FSI) and hemodynamics associated with aortic stenosis. The dynamics of the valve leaflets are determined by an ordinary differential equation with two parameters and this rDOF model is shown to reproduce key features of more complex valve models. The hemodynamics associated with aortic stenosis is studied for three cases: a healthy case and two stenosed cases. The focus of the study is to correlate the hemodynamic features with the source generation mechanism of systolic murmurs associated with aortic stenosis. In the healthy case, extremely weak flow fluctuations are observed. However, in the stenosed cases, simulations show significant turbulent fluctuations in the ascending aorta, which are responsible for the generation of strong wall pressure fluctuations after the aortic root mostly during the deceleration phase of the systole. The intensity of the murmur generation increases with the severity of the stenosis, and the source locations for the two diseased cases studied here lie around 1.0 inlet duct diameters (Do) downstream of the ascending aorta.

References

1.
Carabello
,
B. A.
, and
Paulus
,
W. J.
,
2009
, “
Aortic Stenosis
,”
Lancet
,
373
(
9667
), pp.
956
966
.10.1016/S0140-6736(09)60211-7
2.
Hanna
,
I. R.
, and
Silverman
,
M. E.
,
2002
, “
A History of Cardiac Auscultation and Some of Its Contributors
,”
Am. J. Cardiol.
,
90
(
3
), pp.
259
267
.10.1016/S0002-9149(02)02465-7
3.
Leatham
,
A.
,
1958
, “
Systolic Murmurs
,”
Circulation
,
17
(
4
), pp.
601
611
.10.1161/01.CIR.17.4.601
4.
Lees
,
R. S.
, and
Dewey
,
C. F.
,
1970
, “
Phonoangiography: A New Noninvasive Diagnostic Method for Studying Arterial Disease
,”
Proc. Natl. Acad. Sci. USA
,
67
(
2
), pp.
935
942
.10.1073/pnas.67.2.935
5.
Duncan
,
G. W.
,
Gruber
,
J. O.
,
Dewey
,
C. F.
, Jr.
,
Myers
,
G. S.
, and
Lees
,
R. S.
,
1975
, “
Evaluation of Carotid Stenosis by Phonoangiography
,”
New Engl. J. Med.
,
293
(
22
), pp.
1124
1128
.10.1056/NEJM197511272932205
6.
Semmlow
,
J.
, and
Rahalkar
,
K.
,
2007
, “
Acoustic Detection of Coronary Artery Disease
,”
Annu. Rev. Biomed. Eng.
,
9
(
1
), pp.
449
469
.10.1146/annurev.bioeng.9.060906.151840
7.
Erne
,
P.
,
2008
, “
Beyond Auscultation–Acoustic Cardiography in the Diagnosis and Assessment of Cardiac Disease
,”
Swiss Medical Weekly
,
138
(
31–32
), pp.
439
452
.10.4414/smw.2008.12308
8.
Watrous
,
R. L.
,
Thompson
,
W. R.
, and
Ackerman
,
S. J.
,
2008
, “
The Impact of Computer-Assisted Auscultation on Physician Referrals of Asymptomatic Patients With Heart Murmurs
,”
Clinical Cardiol.
,
31
(
2
), pp.
79
83
.10.1002/clc.20185
9.
Andreou
,
A. G.
,
Abraham
,
T.
,
Thompson
,
W. R.
,
Seo
,
J. H.
, and
Mittal
,
R.
,
2015
, “
Mapping the Cardiac Acousteome: An Overview of Technologies, Tools and Methods
,” 2015 49th Annual Conference on Information Sciences and Systems (
CISS
),
Baltimore, MD, Mar. 18–20, pp.
1
6
.10.1109/CISS.2015.7086899
10.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow
,”
J. Fluid Mech.
,
582
, pp.
253
280
.10.1017/S0022112007005848
11.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows, Part 2: Pulsatile Flow
,”
J. Fluid Mech.
,
582
, pp.
281
318
.10.1017/S0022112007005836
12.
Blackburn
,
H. M.
, and
Sherwin
,
S. J.
,
2007
, “
Instability Modes and Transition of Pulsatile Stenotic Flow: Pulse-Period Dependence
,”
J. Fluid Mech.
,
573
, pp.
57
88
.10.1017/S0022112006003740
13.
Ahmed
,
S.
, and
Giddens
,
D.
,
1983
, “
Velocity Measurement in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Number
,”
J. Biomech.
,
16
(
7
), pp.
505
516
.10.1016/0021-9290(83)90065-9
14.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1983
, “
Flow Disturbance Measurements Through a Constricted Tube at Moderate Reynolds Numbers
,”
J. Biomech.
,
16
(
12
), pp.
955
963
.10.1016/0021-9290(83)90096-9
15.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1984
, “
Pulsatile Poststenotic Flow Studies With Laser Doppler Anemometry
,”
J. Biomech.
,
17
(
9
), pp.
695
705
.10.1016/0021-9290(84)90123-4
16.
Seo
,
J. H.
,
Bakhshaee
,
H.
,
Garreau
,
G.
,
Zhu
,
C.
,
Andreou
,
A.
,
Thompson
,
W. R. W.
, and
Mittal
,
R.
,
2017
, “
A Method for the Computational Modeling of the Physics of Heart Murmurs
,”
J. Comput. Phys.
,
336
(
February
), pp.
546
568
.10.1016/j.jcp.2017.02.018
17.
Zhu
,
C.
,
Seo
,
J.-H.
, and
Mittal
,
R.
,
2018
, “
Computational Modelling and Analysis of Haemodynamics in a Simple Model of Aortic Stenosis
,”
J. Fluid Mech.
,
851
, pp.
23
49
.10.1017/jfm.2018.463
18.
Sotiropoulos
,
F.
,
Le
,
T. B.
, and
Gilmanov
,
A.
,
2016
, “
Fluid Mechanics of Heart Valves and Their Replacements
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
259
283
.10.1146/annurev-fluid-122414-034314
19.
Hughes
,
T. J.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.10.1016/0045-7825(81)90049-9
20.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
21.
Peskin
,
C.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
22.
Hsu
,
M.-C.
,
Kamensky
,
D.
,
Bazilevs
,
Y.
,
Sacks
,
M. S.
, and
Hughes
,
T. J.
,
2014
, “
Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation
,”
Comput. Mech.
,
54
(
4
), pp.
1055
1071
.10.1007/s00466-014-1059-4
23.
Kandail
,
H. S.
,
Trivedi
,
S. D.
,
Shaikh
,
A. C.
,
Bajwa
,
T. K.
,
Daniel
,
P.
,
Jahangir
,
A.
, and
LaDisa
,
J. F.
, Jr.
,
2018
, “
Impact of Annular and Supra-Annular Corevalve Deployment Locations on Aortic and Coronary Artery Hemodynamics
,”
J. Mech. Behav. Biomed. Mater.
,
86
, pp.
131
142
.10.1016/j.jmbbm.2018.06.032
24.
Sodhani
,
D.
,
Reese
,
S.
,
Aksenov
,
A.
,
Soğanci
,
S.
,
Jockenhövel
,
S.
,
Mela
,
P.
, and
Stapleton
,
S. E.
,
2018
, “
Fluid-Structure Interaction Simulation of Artificial Textile Reinforced Aortic Heart Valve: Validation With an in-Vitro Test
,”
J. Biomech.
,
78
, pp.
52
69
.10.1016/j.jbiomech.2018.07.018
25.
Thubrikar
,
M.
,
2018
,
The Aortic Valve
,
Routledge
, Boca Raton, FL.
26.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp - Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.10.1115/1.429624
27.
Peskin
,
C. S.
,
1982
, “
The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods
,”
Annu. Review Fluid Mech.
,
14
(
1
), pp.
235
259
.10.1146/annurev.fl.14.010182.001315
28.
Griffith
,
B. E.
,
2010
, “
Immersed Boundary Model of Aortic Heart Valve Dynamics With Physiological Driving and Loading Conditions
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
1
), pp.
807
827
.10.1002/cnm.1445
29.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.10.1115/1.2049337
30.
Kim
,
H.
,
Lu
,
J.
,
Sacks
,
M. S.
, and
Chandran
,
K. B.
,
2008
, “
Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
262
275
.10.1007/s10439-007-9409-4
31.
de Tullio
,
M.
, and
Pascazio
,
G.
,
2016
, “
A Moving-Least-Squares Immersed Boundary Method for Simulating the Fluid-Structure Interaction of Elastic Bodies With Arbitrary Thickness
,”
J. Comput. Phys.
,
325
, pp.
201
225
.10.1016/j.jcp.2016.08.020
32.
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2015
, “
Asymptotic Model of Fluid–Tissue Interaction for Mitral Valve Dynamics
,”
Cardiovasc. Eng. Technol.
,
6
(
2
), pp.
95
104
.10.1007/s13239-014-0201-y
33.
Tagliabue
,
A.
,
Dedè
,
L.
, and
Quarteroni
,
A.
,
2017
, “
Fluid Dynamics of an Idealized Left Ventricle: The Extended Nitsche's Method for the Treatment of Heart Valves as Mixed Time Varying Boundary Conditions
,”
Int. J. Numer. Methods Fluids
,
85
(
3
), pp.
135
164
.10.1002/fld.4375
34.
Laadhari
,
A.
, and
Székely
,
G.
,
2017
, “
Eulerian Finite Element Method for the Numerical Modeling of Fluid Dynamics of Natural and Pathological Aortic Valves
,”
J. Comput. Appl. Math.
,
319
, pp.
236
261
.10.1016/j.cam.2016.11.042
35.
Leo
,
H. L.
,
Simon
,
H.
,
Carberry
,
J.
,
Lee
,
S. C.
, and
Yoganathan
,
A. P.
,
2005
, “
A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
429
443
.10.1007/s10439-005-2498-z
36.
Yap
,
C. H.
,
Saikrishnan
,
N.
,
Tamilselvan
,
G.
, and
Yoganathan
,
A. P.
,
2012
, “
Experimental Measurement of Dynamic Fluid Shear Stress on the Aortic Surface of the Aortic Valve Leaflet
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
171
182
.10.1007/s10237-011-0301-7
37.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
,
2003
, “
A Three-Dimensional Computational Analysis of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
,
36
(
1
), pp.
103
112
.10.1016/S0021-9290(02)00244-0
38.
Crawford
,
M. H.
, and
Roldan
,
C. A.
,
2001
, “
Prevalence of Aortic Root Dilatation and Small Aortic Roots in Valvular Aortic Stenosis
,”
Am. J. Cardiol.
,
87
(
11
), pp.
1311
1313
.10.1016/S0002-9149(01)01530-2
39.
Reul
,
H.
,
Vahlbruch
,
A.
,
Giersiepen
,
M.
,
Schmitz-Rode
,
T.
,
Hirtz
,
V.
, and
Effert
,
S.
,
1990
, “
The Geometry of the Aortic Root in Health, at Valve Disease and After Valve Replacement
,”
J. Biomech.
,
23
(
2
), pp.
181
191
.10.1016/0021-9290(90)90351-3
40.
Pedley
,
T. J.
,
1980
,
The Fluid Mechanics of Large Blood Vessels
, Vol.
1
of Cambridge Monographs on Mechanics,
Cambridge University Press
,
Cambridge, UK
.
41.
Watanabe
,
H.
,
Sugiura
,
S.
,
Kafuku
,
H.
, and
Hisada
,
T.
,
2004
, “
Multiphysics Simulation of Left Ventricular Filling Dynamics Using Fluid-Structure Interaction Finite Element Method
,”
Biophys. J.
,
87
(
3
), pp.
2074
2085
.10.1529/biophysj.103.035840
42.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
43.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations
,”
J. Comput. Phys.
,
230
(
19
), pp.
7347
7363
.10.1016/j.jcp.2011.06.003
44.
Seo
,
J. H.
,
Zhu
,
C.
,
Resar
,
J.
, and
Mittal
,
R.
,
2020
, “
Flow Physics of Normal and Abnormal Bioprosthetic Aortic Valves
,”
Int. J. Heat Fluid Flow
,
86
(
March
), p.
108740
.10.1016/j.ijheatfluidflow.2020.108740
45.
Makkar
,
R. R.
,
Fontana
,
G.
,
Jilaihawi
,
H.
,
Chakravarty
,
T.
,
Kofoed
,
K. F.
,
De Backer
,
O.
,
Asch
,
F. M.
,
Ruiz
,
C. E.
, et al.,
2015
, “
Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves
,”
New Engl. J. Med.
,
373
(
21
), pp.
2015
2024
.10.1056/NEJMoa1509233
46.
Baumgartner
,
H.
,
Hung
,
J.
,
Bermejo
,
J.
,
Chambers
,
J. B.
,
Evangelista
,
A.
,
Griffin
,
B. P.
,
Iung
,
B.
,
Otto
,
C. M.
,
Pellikka
,
P. A.
, and
Quiñones
,
M.
,
2009
, “
Echocardiographic Assessment of Valve Stenosis: EAE/ASE Recommendations for Clinical Practice
,”
J. Am. Soc. Echocardiograp.
,
22
(
1
), pp.
1
23
.10.1016/j.echo.2008.11.029
47.
Manning
,
W. J.
,
2013
, “
Asymptomatic Aortic Stenosis in the Elderly: A Clinical Review
,”
JAMA
,
310
(
14
), pp.
1490
1497
.10.1001/jama.2013.279194
48.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program 1988
, Center for Turbulence Research, Stanford, CA, pp.
193
208
.https://web.stanford.edu/group/ctr/Summer/201306111537.pdf
49.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
MIT Press
, Cambridge, MA.
50.
Hinze
,
J.
,
1975
,
Turbulence
,
McGraw-Hill
, New York.
51.
Stein
,
P. D.
, and
Sabbah
,
H. N.
,
1976
, “
Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves
,”
Circulation Res.
,
39
(
1
), pp.
58
65
.10.1161/01.RES.39.1.58
52.
Zhu
,
C.
,
2018
, “
High-Fidelity Computational Modeling of the Coupled Flow-Acoustic Physics of Heart Murmurs (Chapter 6)
,” Ph.D. thesis,
Johns Hopkins University
, Baltimore, MD.
53.
Seo
,
J. H.
, and
Mittal
,
R.
,
2012
, “
A Coupled Flow-Acoustic Computational Study of Bruits From a Modeled Stenosed Artery
,”
Med. Biol. Eng. Comput.
,
50
(
10
), pp.
1025
35
.10.1007/s11517-012-0917-5
54.
Zhu
,
C.
,
Seo
,
J.-H.
,
Bakhshaee
,
H.
, and
Mittal
,
R.
,
2017
, “
A Computational Method for Analyzing the Biomechanics of Arterial Bruits
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051008
.10.1115/1.4036262
55.
Zhu
,
C.
,
Seo
,
J.-H.
, and
Mittal
,
R.
,
2019
, “
Computational Modeling and Analysis of Murmurs Generated by Modeled Aortic Stenoses
,”
ASME J. Biomech. Eng.
,
141
(
4
), p.
041007
.10.1115/1.4042765
56.
Bickley
,
L.
, and
Szilagyi
,
P. G.
,
2012
,
Bates' Guide to Physical Examination and History-Taking
,
Lippincott Williams & Wilkins
, Philadelphia, PA.
You do not currently have access to this content.