Abstract

Knowledge of neck muscle activation strategies before sporting impacts is crucial for investigating mechanisms of severe spinal injuries. However, measurement of muscle activations during impacts is experimentally challenging and computational estimations are not often guided by experimental measurements. We investigated neck muscle activations before impacts with the use of electromyography (EMG)-assisted neuromusculoskeletal models. Kinematics and EMG recordings from four major neck muscles of a rugby player were experimentally measured during rugby activities. A subject-specific musculoskeletal model was created with muscle parameters informed from MRI measurements. The model was used in the calibrated EMG-informed neuromusculoskeletal modeling toolbox and three neural solutions were compared: (i) static optimization (SO), (ii) EMG-assisted (EMGa), and (iii) MRI-informed EMG-assisted (EMGaMRI). EMGaMRI and EMGa significantly (p < 0.01) outperformed SO when tracking cervical spine net joint moments from inverse dynamics in flexion/extension (RMSE = 0.95, 1.14, and 2.32 N·m) but not in lateral bending (RMSE = 1.07, 2.07, and 0.84 N·m). EMG-assisted solutions generated physiological muscle activation patterns and maintained experimental cocontractions significantly (p < 0.01) outperforming SO, which was characterized by saturation and nonphysiological “on-off” patterns. This study showed for the first time that physiological neck muscle activations and cervical spine net joint moments can be estimated without assumed a priori objective criteria before impacts. Future studies could use this technique to provide detailed initial loading conditions for theoretical simulations of neck injury during impacts.

References

1.
Dennison
,
C. R.
,
Macri
,
E. M.
, and
Cripton
,
P. A.
,
2012
, “
Mechanisms of Cervical Spine Injury in Rugby Union: Is It Premature to Abandon Hyperflexion as the Main Mechanism Underpinning Injury?
,”
Br. J. Sports Med.
,
46
(
8
), pp.
545
549
.10.1136/bjsports-2012-091257
2.
Organization, W. H., and Society, I. S. C.
,
2013
, “
International Perspectives on Spinal Cord Injury
,” World Health Organization and International Spinal Cord Society, Malta, Report No. 9241564660.
3.
Sekhon
,
L. H. S.
, and
Fehlings
,
M. G.
,
2001
, “
Epidemiology, Demographics, and Pathophysiology of Acute Spinal Cord Injury
,”
Spine
,
26
(
24S
), pp. S2–S12.
4.
Yoganandan, N., Haffner, M., Maiman, D., Nichols, H., Pintar, F. A., Jentzen, J., Weinshel, S. S., Larson, S. J., and Sances, A., 1989, “Epidemiology and Injury Biomechanics of Motor Vehicle Related Trauma to the Human Spine,“
SAE
Technical Paper No. 89243.10.4271/892438
5.
Priebe
,
M. M.
,
Chiodo
,
A. E.
,
Scelza
,
W. M.
,
Kirshblum
,
S. C.
,
Wuermser
,
L.-A.
, and
Ho
,
C. H.
,
2007
, “
Spinal Cord Injury Medicine. 6. Economic and Societal Issues in Spinal Cord Injury
,”
Arch. Phys. Med. Rehabil.
,
88
(
3
), pp.
S84
S88
.10.1016/j.apmr.2006.12.005
6.
Bahr
,
R.
, and
Krosshaug
,
T.
,
2005
, “
Understanding Injury Mechanisms: A Key Component of Preventing Injuries in Sport
,”
Br. J. Sports Med.
,
39
(
6
), pp.
324
329
.10.1136/bjsm.2005.018341
7.
van Mechelen
,
W.
,
Hlobil
,
H.
, and
Kemper
,
H. C. G.
,
1992
, “
Incidence, Severity, Aetiology and Prevention of Sports Injuries
,”
Sports Med.
,
14
(
2
), pp.
82
99
.10.2165/00007256-199214020-00002
8.
Holsgrove
,
T. P.
,
Cazzola
,
D.
,
Preatoni
,
E.
,
Trewartha
,
G.
,
Miles
,
A. W.
,
Gill
,
H. S.
, and
Gheduzzi
,
S.
,
2015
, “
An Investigation Into Axial Impacts of the Cervical Spine Using Digital Image Correlation
,”
Spine J.
,
15
(
8
), pp.
1856
1863
.10.1016/j.spinee.2015.04.005
9.
Nightingale
,
R. W.
,
McElhaney
,
J. H.
,
Richardson
,
W. J.
, and
Myers
,
B. S.
,
1996
, “
Dynamic Responses of the Head and Cervical Spine to Axial Impact Loading
,”
J. Biomech.
,
29
(
3
), pp.
307
318
.10.1016/0021-9290(95)00056-9
10.
de Bruijn
,
E.
,
van der Helm
,
F. C. T.
, and
Happee
,
R.
,
2016
, “
Analysis of Isometric Cervical Strength With a Nonlinear Musculoskeletal Model With 48 Degrees of Freedom
,”
Multibody Syst. Dyn.
,
36
(
4
), pp.
339
362
.10.1007/s11044-015-9461-z
11.
Nightingale
,
R. W.
,
Sganga
,
J.
,
Cutcliffe
,
H.
, and
Bass
,
C. R.
,
2016
, “
Impact Responses of the Cervical Spine: A Computational Study of the Effects of Muscle Activity, Torso Constraint, and Pre-Flexion
,”
J. Biomech.
,
49
(
4
), pp.
558
564
.10.1016/j.jbiomech.2016.01.006
12.
Newell
,
R. S.
,
Siegmund
,
G. P.
,
Blouin
,
J.-S.
,
Street
,
J.
, and
Cripton
,
P. A.
,
2014
, “
Cervical Vertebral Realignment When Voluntarily Adopting a Protective Neck Posture
,”
Spine
,
39
(
15
), pp. E885–E893.
13.
Saari
,
A.
,
Dennison
,
C. R.
,
Zhu
,
Q.
,
Nelson
,
T. S.
,
Morley
,
P.
,
Oxland
,
T. R.
,
Cripton
,
P. A.
, and
Itshayek
,
E.
,
2013
, “
Compressive Follower Load Influences Cervical Spine Kinematics and Kinetics During Simulated Head-First Impact in an In Vitro Model
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111003
.10.1115/1.4024822
14.
Dibb
,
A. T.
,
Cox
,
C. A.
,
Nightingale
,
R. W.
,
Luck
,
J. F.
,
Cutcliffe
,
H. C.
,
Myers
,
B. S.
,
Arbogast
,
K. B.
,
Seacrist
,
T.
, and
Bass
,
C. R.
,
2013
, “
Importance of Muscle Activations for Biofidelic Pediatric Neck Response in Computational Models
,”
Traffic Injury Prev.
,
14
(
sup1
), pp.
S116
S127
.10.1080/15389588.2013.806795
15.
Mortensen
,
J.
,
Trkov
,
M.
, and
Merryweather
,
A.
,
2018
, “
Exploring Novel Objective Functions for Simulating Muscle Coactivation in the Neck
,”
J. Biomech.
,
71
, pp.
127
134
.10.1016/j.jbiomech.2018.01.030
16.
Kian
,
A.
,
Pizzolato
,
C.
,
Halaki
,
M.
,
Ginn
,
K.
,
Lloyd
,
D.
,
Reed
,
D.
, and
Ackland
,
D.
,
2019
, “
Static Optimization Underestimates Antagonist Muscle Activity at the Glenohumeral Joint: A Musculoskeletal Modeling Study
,”
J. Biomech.
,
97
, p.
109348
.10.1016/j.jbiomech.2019.109348
17.
Davico
,
G.
,
Pizzolato
,
C.
,
Lloyd
,
D. G.
,
Obst
,
S. J.
,
Walsh
,
H. P. J.
, and
Carty
,
C. P.
,
2020
, “
Increasing Level of Neuromusculoskeletal Model Personalisation to Investigate Joint Contact Forces in Cerebral Palsy: A Twin Case Study
,”
Clinical Biomech.
,
72
, pp.
141
149
.10.1016/j.clinbiomech.2019.12.011
18.
Hoang
,
H. X.
,
Diamond
,
L. E.
,
Lloyd
,
D. G.
, and
Pizzolato
,
C.
,
2019
, “
A Calibrated EMG-Informed Neuromusculoskeletal Model Can Appropriately Account for Muscle co-Contraction in the Estimation of Hip Joint Contact Forces in People With Hip Osteoarthritis
,”
J. Biomech.
,
83
, pp.
134
142
.10.1016/j.jbiomech.2018.11.042
19.
Serrancolí
,
G.
,
Kinney
,
A. L.
,
Fregly
,
B. J.
, and
Font-Llagunes
,
J. M.
,
2016
, “
Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking
,”
ASME J. Biomech. Eng.
,
138
(
8
), p. 081001.10.1115/1.4033673
20.
Blouin
,
J.-S.
,
Siegmund
,
G. P.
,
Carpenter
,
M. G.
, and
Inglis
,
J. T.
,
2007
, “
Neural Control of Superficial and Deep Neck Muscles in Humans
,”
J. Neurophysiol.
,
98
(
2
), pp.
920
928
.10.1152/jn.00183.2007
21.
Siegmund
,
G. P.
,
Blouin
,
J.-S.
,
Brault
,
J. R.
,
Hedenstierna
,
S.
, and
Inglis
,
J. T.
,
2007
, “
Electromyography of Superficial and Deep Neck Muscles During Isometric, Voluntary, and Reflex Contractions
,”
ASME J. Biomech. Eng.
,
129
(
1
), pp.
66
77
.10.1115/1.2401185
22.
Siegmund
,
G. P.
,
Blouin
,
J.-S.
,
Carpenter
,
M. G.
,
Brault
,
J. R.
, and
Inglis
,
J. T.
,
2008
, “
Are Cervical Multifidus Muscles Active During Whiplash and Startle? An Initial Experimental Study
,”
BMC Musculoskeletal Disorders
,
9
(
1
), pp.
80
80
.10.1186/1471-2474-9-80
23.
Cholewicki
,
J.
, and
McGill
,
S. M.
,
1994
, “
EMG Assisted Optimization: A Hybrid Approach for Estimating Muscle Forces in an Indeterminate Biomechanical Model
,”
J. Biomech.
,
27
(
10
), pp.
1287
1289
.10.1016/0021-9290(94)90282-8
24.
Pizzolato
,
C.
,
Lloyd
,
D. G.
,
Sartori
,
M.
,
Ceseracciu
,
E.
,
Besier
,
T. F.
,
Fregly
,
B. J.
, and
Reggiani
,
M.
,
2015
, “
Ceinms: A Toolbox to Investigate the Influence of Different Neural Control Solutions on the Prediction of Muscle Excitation and Joint Moments During Dynamic Motor Tasks
,”
J. Biomech.
,
48
(
14
), pp.
3929
3936
.10.1016/j.jbiomech.2015.09.021
25.
Sartori
,
M.
,
Farina
,
D.
, and
Lloyd
,
D. G.
,
2014
, “
Hybrid Neuromusculoskeletal Modeling to Best Track Joint Moments Using a Balance Between Muscle Excitations Derived From Electromyograms and Optimization
,”
J. Biomech.
,
47
(
15
), pp.
3613
3621
.10.1016/j.jbiomech.2014.10.009
26.
Cheng
,
C.-H.
,
Chien
,
A.
,
Hsu
,
W.-L.
,
Chen
,
C. P.-C.
, and
Cheng
,
H.-Y. K.
,
2016
, “
Investigation of the Differential Contributions of Superficial and Deep Muscles on Cervical Spinal Loads With Changing Head Postures
,”
PLoS One
,
11
(
3
), p.
e0150608
.10.1371/journal.pone.0150608
27.
Choi
,
H.
,
2003
, “
Quantitative Assessment of co-Contraction in Cervical Musculature
,”
Med. Eng. Phys.
,
25
(
2
), pp.
133
140
.10.1016/S1350-4533(02)00151-0
28.
Cholewicki
,
J.
,
McGill
,
S. M.
, and
Norman
,
R. W.
,
1995
, “
Comparison of Muscle Forces and Joint Load From an Optimization and EMG Assisted Lumbar Spine Model: Towards Development of a Hybrid Approach
,”
J. Biomech.
,
28
(
3
), pp.
321
331
.10.1016/0021-9290(94)00065-C
29.
Molinaro
,
D. D.
,
King
,
A. S.
, and
Young
,
A. J.
,
2020
, “
Biomechanical Analysis of Common Solid Waste Collection Throwing Techniques Using Opensim and an EMG-Assisted Solver
,”
J. Biomech.
,
104
, p.
109704
.10.1016/j.jbiomech.2020.109704
30.
Wesseling
,
M.
,
De Groote
,
F.
,
Bosmans
,
L.
,
Bartels
,
W.
,
Meyer
,
C.
,
Desloovere
,
K.
, and
Jonkers
,
I.
,
2016
, “
Subject-Specific Geometrical Detail Rather Than Cost Function Formulation Affects Hip Loading Calculation
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
14
), pp.
1475
1488
.10.1080/10255842.2016.1154547
31.
O'Brien
,
T. D.
,
Reeves
,
N. D.
,
Baltzopoulos
,
V.
,
Jones
,
D. A.
, and
Maganaris
,
C. N.
,
2010
, “
In Vivo Measurements of Muscle Specific Tension in Adults and Children
,”
Exp. Physiol.
,
95
(
1
), pp.
202
210
.10.1113/expphysiol.2009.048967
32.
Suderman
,
B. L.
, and
Vasavada
,
A. N.
,
2017
, “
Neck Muscle Moment Arms Obtained in-Vivo From Mri: Effect of Curved and Straight Modeled Paths
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
2009
2024
.10.1007/s10439-017-1830-8
33.
Au
,
J.
,
Perriman
,
D. M.
,
Pickering
,
M. R.
,
Buirski
,
G.
,
Smith
,
P. N.
, and
Webb
,
A. L.
,
2016
, “
Magnetic Resonance Imaging Atlas of the Cervical Spine Musculature
,”
Clin. Anat.
,
29
(
5
), pp.
643
659
.10.1002/ca.22731
34.
Moeller
,
T. B.
, and
Reif
,
E.
,
2007
,
Pocket Atlas of Sectional Anatomy. Computer Tomography and Magnetic Resonance Imaging
, Vol.
3
,
Spine, Extremities, Joints
,
Thieme, Germany
.
35.
Cazzola
,
D.
,
Holsgrove
,
T. P.
,
Preatoni
,
E.
,
Gill
,
H. S.
, and
Trewartha
,
G.
,
2017
, “
Cervical Spine Injuries: A Whole-Body Musculoskeletal Model for the Analysis of Spinal Loading
,”
PLoS One
,
12
(
1
), p.
e0169329
.10.1371/journal.pone.0169329
36.
Cazzola
,
D.
,
Preatoni
,
E.
,
Stokes
,
K. A.
,
England
,
M. E.
, and
Trewartha
,
G.
,
2015
, “
A Modified Prebind Engagement Process Reduces Biomechanical Loading on Front Row Players During Scrummaging: A Cross-Sectional Study of 11 Elite Teams
,”
Br. J. Sports Med.
,
49
(
8
), pp.
541
546
.10.1136/bjsports-2013-092904
37.
Preatoni
,
E.
,
Cazzola
,
D.
,
Stokes
,
K. A.
,
England
,
M.
, and
Trewartha
,
G.
,
2016
, “
Pre-Binding Prior to Full Engagement Improves Loading Conditions for Front-Row Players in Contested Rugby Union Scrums
,”
Scand. J. Med. Sci. Sports
,
26
(
12
), pp.
1398
1407
.10.1111/sms.12592
38.
Seminati
,
E.
,
Cazzola
,
D.
,
Preatoni
,
E.
, and
Trewartha
,
G.
,
2017
, “
Specific Tackling Situations Affect the Biomechanical Demands Experienced by Rugby Union Players
,”
Sports Biomech.
,
16
(
1
), pp.
58
75
.10.1080/14763141.2016.1194453
39.
Cazzola
,
D.
,
Stone
,
B.
,
Holsgrove
,
T. P.
,
Trewartha
,
G.
, and
Preatoni
,
E.
,
2016
, “
Spinal Muscle Activity in Simulated Rugby Union Scrummaging is Affected by Different Engagement Conditions
,”
Scand. J. Med. Sci. Sports
,
26
(
4
), pp.
432
838
.10.1111/sms.12446
40.
Brauge
,
D.
,
Delpierre
,
C.
,
Adam
,
P.
,
Sol
,
J. C.
,
Bernard
,
P.
, and
Roux
,
F.-E.
,
2015
, “
Clinical and Radiological Cervical Spine Evaluation in Retired Professional Rugby Players
,”
J. Neurosurg.
,
23
(
5
), pp.
551
557
.10.3171/2015.1.SPINE14594
41.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An Emg-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.10.1016/S0021-9290(03)00010-1
42.
Mortensen
,
J. D.
,
Vasavada
,
A. N.
, and
Merryweather
,
A. S.
,
2018
, “
The Inclusion of Hyoid Muscles Improve Moment Generating Capacity and Dynamic Simulations in Musculoskeletal Models of the Head and Neck
,”
PLoS One
,
13
(
6
), p.
e0199912
.10.1371/journal.pone.0199912
43.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
44.
Vasavada
,
A. N.
,
Li
,
S. P.
, and
Delp
,
S. L.
,
1998
, “
Influence of Muscle Morphometry and Moment Arms on the Moment-Generating Capacity of Human Neck Muscles
,”
Spine
,
23
(
4
), pp.
412
422
.10.1097/00007632-199802150-00002
45.
Kuo
,
C.
,
Sheffels
,
J.
,
Fanton
,
M.
,
Yu Ina
,
B.
,
Hamalainen
,
R.
, and
Camarillo
,
D.
,
2019
, “
Passive Cervical Spine Ligaments Provide Stability During Head Impacts
,”
J. R. Soc. Interface
,
16
(
154
), p.
20190086
.10.1098/rsif.2019.0086
46.
Vasavada
,
A. N.
,
Lasher
,
R. A.
,
Meyer
,
T. E.
, and
Lin
,
D. C.
,
2008
, “
Defining and Evaluating Wrapping Surfaces for MRI-Derived Spinal Muscle Paths
,”
J. Biomech.
,
41
(
7
), pp.
1450
1457
.10.1016/j.jbiomech.2008.02.027
47.
Beaucage-Gauvreau
,
E.
,
Robertson
,
W. S. P.
,
Brandon
,
S. C. E.
,
Fraser
,
R.
,
Freeman
,
B. J. C.
,
Graham
,
R. B.
,
Thewlis
,
D.
, and
Jones
,
C. F.
,
2019
, “
Validation of an Opensim Full-Body Model With Detailed Lumbar Spine for Estimating Lower Lumbar Spine Loads During Symmetric and Asymmetric Lifting Tasks
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
5
), pp.
451
464
.10.1080/10255842.2018.1564819
48.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
What is a Moment Arm? Calculating Muscle Effectiveness in Biomechanical Models Using Generalised Coordinates
,”
ASME
Paper No. DETC2013-13633.10.1115/DETC2013-13633
49.
Heiden
,
T. L.
,
Lloyd
,
D. G.
, and
Ackland
,
T. R.
,
2009
, “
Knee Joint Kinematics, Kinetics and Muscle co-Contraction in Knee Osteoarthritis Patient Gait
,”
Clin. Biomech.
,
24
(
10
), pp.
833
841
.10.1016/j.clinbiomech.2009.08.005
50.
Arjmand
,
N.
,
Gagnon
,
D.
,
Plamondon
,
A.
,
Shirazi-Adl
,
A.
, and
Larivière
,
C.
,
2010
, “
A Comparative Study of Two Trunk Biomechanical Models Under Symmetric and Asymmetric Loadings
,”
J. Biomech.
,
43
(
3
), pp.
485
491
.10.1016/j.jbiomech.2009.09.032
51.
Gagnon
,
D.
,
Arjmand
,
N.
,
Plamondon
,
A.
,
Shirazi-Adl
,
A.
, and
Larivière
,
C.
,
2011
, “
An Improved Multi-Joint Emg-Assisted Optimization Approach to Estimate Joint and Muscle Forces in a Musculoskeletal Model of the Lumbar Spine
,”
J. Biomech.
,
44
(
8
), pp.
1521
1529
.10.1016/j.jbiomech.2011.03.002
52.
Nightingale
,
R. W.
,
Bass
,
C. R.
, and
Myers
,
B. S.
,
2019
, “
On the Relative Importance of Bending and Compression in Cervical Spine Bilateral Facet Dislocation
,”
Clin. Biomech.
,
64
, pp.
90
97
.10.1016/j.clinbiomech.2018.02.015
53.
Newell
,
R. S.
,
Blouin
,
J.-S.
,
Street
,
J.
,
Cripton
,
P. A.
, and
Siegmund
,
G. P.
,
2018
, “
The Neutral Posture of the Cervical Spine is Not Unique in Human Subjects
,”
J. Biomech.
,
80
, pp.
53
62
.10.1016/j.jbiomech.2018.08.012
54.
Walter
,
J. P.
,
Kinney
,
A. L.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
, and
Fregly
,
B. J.
,
2014
, “
Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p. 021031.10.1115/1.4026428
55.
Moroney
,
S. P.
,
Schultz
,
A. B.
, and
Miller
,
J. A. A.
,
1988
, “
Analysis and Measurement of Neck Loads
,”
J. Orthop. Res.
,
6
(
5
), pp.
713
720
.10.1002/jor.1100060514
56.
McGill
,
S.
,
Juker
,
D.
, and
Kropf
,
P.
,
1996
, “
Appropriately Placed Surface EMG Electrodes Reflect Deep Muscle Activity (Psoas, Quadratus Lumborum, Abdominal Wall) in the Lumbar Spine
,”
J. Biomech.
,
29
(
11
), pp.
1503
1507
.10.1016/0021-9290(96)84547-7
57.
Van den Abbeele
,
M.
,
Li
,
F.
,
Pomero
,
V.
,
Bonneau
,
D.
,
Sandoz
,
B.
,
Laporte
,
S.
, and
Skalli
,
W.
,
2018
, “
A Subject-Specific Biomechanical Control Model for the Prediction of Cervical Spine Muscle Forces
,”
Clin. Biomech.
,
51
, pp.
58
66
.10.1016/j.clinbiomech.2017.12.001
58.
Assila
,
N.
,
Pizzolato
,
C.
,
Martinez
,
R.
,
Lloyd
,
D. G.
, and
Begon
,
M.
,
2020
, “
Emg-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling
,”
Appl. Sci.
,
10
(
10
), p.
3522
.10.3390/app10103522
59.
Hoang
,
H. X.
,
Pizzolato
,
C.
,
Diamond
,
L. E.
, and
Lloyd
,
D. G.
,
2018
, “
Subject-Specific Calibration of Neuromuscular Parameters Enables Neuromusculoskeletal Models to Estimate Physiologically Plausible Hip Joint Contact Forces in Healthy Adults
,”
J. Biomech.
,
80
, pp.
111
120
.10.1016/j.jbiomech.2018.08.023
60.
Veerkamp
,
K.
,
Waterval
,
N.
,
Geijtenbeek
,
T.
,
Carty
,
C.
,
Lloyd
,
D.
,
Harlaar
,
J.
, and
van der Krogt
,
M.
,
2021
, “
Evaluating Cost Function Criteria in Predicting Healthy Gait
,”
J. Biomech.
,
123
, p.
110530
.10.1016/j.jbiomech.2021.110530
61.
Diamond
,
L.
,
Hoang
,
H.
,
Barrett
,
R.
,
Loureiro
,
A.
,
Constantinou
,
M.
,
Lloyd
,
D.
, and
Pizzolato
,
C.
,
2020
, “
Individuals With Mild-to-Moderate Hip Osteoarthritis Walk With Lower Hip Joint Contact Forces Despite Higher Levels of Muscle co-Contraction Compared to Healthy Individuals
,”
Osteoarthritis Cartilage
,
28
(
7
), pp.
924
931
.10.1016/j.joca.2020.04.008
You do not currently have access to this content.