Abstract

Current clinical practice is often unable to identify the causes of conductive hearing loss in the middle ear with sufficient certainty without exploratory surgery. Besides the large uncertainties due to interindividual variances, only partially understood cause–effect principles are a major reason for the hesitant use of objective methods such as wideband tympanometry in diagnosis, despite their high sensitivity to pathological changes. For a better understanding of objective metrics of the middle ear, this study presents a model that can be used to reproduce characteristic changes in metrics of the middle ear by altering local physical model parameters linked to the anatomical causes of a pathology. A finite-element model is, therefore, fitted with an adaptive parameter identification algorithm to results of a temporal bone study with stepwise and systematically prepared pathologies. The fitted model is able to reproduce well the measured quantities reflectance, impedance, umbo and stapes transfer function for normal ears and ears with otosclerosis, malleus fixation, and disarticulation. In addition to a good representation of the characteristic influences of the pathologies in the measured quantities, a clear assignment of identified model parameters and pathologies consistent with previous studies is achieved. The identification results highlight the importance of the local stiffness and damping values in the middle ear for correct mapping of pathological characteristics and address the challenges of limited measurement data and wide parameter ranges from the literature. The great sensitivity of the model with respect to pathologies indicates a high potential for application in model-based diagnosis.

References

1.
Merchant
,
S. N.
, and
Rosowski
,
J. J.
,
2010
, “
Acoustics and Mechanics of the Middle Ear
,”
Glasscock-Shambaugh's Surgery of the Ear
,
A. J.
Gulya
,
L. B.
Minor
, and
D. S.
Poe
, eds.,
People's Medical Publishing House
,
Shelton
, pp.
49
72
.
2.
Kamrava
,
B.
,
Gerstenhaber
,
J. A.
,
Amin
,
M.
,
Har-El
,
Y.-E.
, and
Roehm
,
P. C.
,
2017
, “
Preliminary Model for the Design of a Custom Middle Ear Prosthesis
,”
Otol. Neurotol.
,
38
(
6
), pp.
839
845
.10.1097/MAO.0000000000001403
3.
Fisch
,
U.
,
Acar
,
G. O.
, and
Huber
,
A. M.
,
2001
, “
Malleostapedotomy in Revision Surgery for Otosclerosis
,”
Otol. Neurotol.
,
22
(
6
), pp.
776
785
.10.1097/00129492-200111000-00011
4.
Rosowski
,
J. J.
,
Nakajima
,
H. H.
, and
Merchant
,
S. N.
,
2008
, “
Clinical Utility of Laser-Doppler Vibrometer Measurements in Live Normal and Pathologic Human Ears
,”
Ear Hear.
,
29
(
1
), pp.
3
19
.10.1097/AUD.0b013e31815d63a5
5.
Voss
,
S. E.
,
Merchant
,
G. R.
, and
Horton
,
N. J.
,
2012
, “
Effects of Middle-Ear Disorders on Power Reflectance Measured in Cadaveric Ear Canals
,”
Ear Hear.
,
33
(
2
), pp.
195
208
.10.1097/AUD.0b013e31823235b5
6.
Feeney
,
M. P.
,
Grant
,
I. L.
, and
Marryott
,
L. P.
,
2003
, “
Wideband Energy Reflectance Measurements in Adults With Middle-Ear Disorders
,”
J. Speech Lang. Hear. Res.
,
46
(
4
), pp.
901
911
.10.1044/1092-4388(2003/070)
7.
Feeney
,
M. P.
,
Grant
,
I. L.
, and
Mills
,
D. M.
,
2009
, “
Wideband Energy Reflectance Measurements of Ossicular Chain Discontinuity and Repair in Human Temporal Bone
,”
Ear Hear.
,
30
(
4
), pp.
391
400
.10.1097/AUD.0b013e3181a283ed
8.
Nakajima
,
H. H.
,
Rosowski
,
J. J.
,
Shahnaz
,
N.
, and
Voss
,
S. E.
,
2013
, “
Assessment of Ear Disorders Using Power Reflectance
,”
Ear Hear.
,
34
(
701
), pp.
48
53
.10.1097/AUD.0b013e31829c964d
9.
Nakajima
,
H. H.
,
Pisano
,
D. V.
,
Roosli
,
C.
,
Hamade
,
M. A.
,
Merchant
,
G. R.
,
Mahfoud
,
L.
,
Halpin
,
C. F.
,
Rosowski
,
J. J.
, and
Merchant
,
S. N.
,
2012
, “
Comparison of Ear-Canal Reflectance and Umbo Velocity in Patients With Conductive Hearing Loss: A Preliminary Study
,”
Ear Hear.
,
33
(
1
), pp.
35
43
.10.1097/AUD.0b013e31822ccba0
10.
Merchant
,
G. R.
,
Merchant
,
S. N.
,
Rosowski
,
J. J.
, and
Nakajima
,
H. H.
,
2016
, “
Controlled Exploration of the Effects of Conductive Hearing Loss on Wideband Acoustic Immittance in Human Cadaveric Preparations
,”
Hear. Res.
,
341
, pp.
19
30
.10.1016/j.heares.2016.07.018
11.
Merchant
,
G. R.
,
Siegel
,
J. H.
,
Neely
,
S. T.
,
Rosowski
,
J. J.
, and
Nakajima
,
H. H.
,
2019
, “
Effect of Middle-Ear Pathology on High-Frequency Ear Canal Reflectance Measurements in the Frequency and Time Domains
,”
J. Assoc. Res. Otolaryngol.
,
20
(
6
), pp.
529
552
.10.1007/s10162-019-00735-1
12.
Rosowski
,
J. J.
,
Nakajima
,
H. H.
,
Hamade
,
M. A.
,
Mahfoud
,
L.
,
Merchant
,
G. R.
,
Halpin
,
C. F.
, and
Merchant
,
S. N.
,
2012
, “
Ear-Canal Reflectance, Umbo Velocity, and Tympanometry in Normal-Hearing Adults
,”
Ear Hear.
,
33
(
1
), pp.
19
34
.10.1097/AUD.0b013e31822ccb76
13.
Gladiné
,
K.
, and
Dirckx
,
J. J. J.
,
2018
, “
Average Middle Ear Frequency Response Curves With Preservation of Curve Morphology Characteristics
,”
Hear. Res.
,
363
, pp.
39
48
.10.1016/j.heares.2018.02.005
14.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2013
, “
Finite Element Modeling of Energy Absorbance in Normal and Disordered Human Ears
,”
Hear. Res.
,
301
, pp.
146
155
.10.1016/j.heares.2012.12.005
15.
Zhao
,
F.
,
Koike
,
T.
,
Wang
,
J.
,
Sienz
,
H.
, and
Meredith
,
R.
,
2009
, “
Finite Element Analysis of the Middle Ear Transfer Functions and Related Pathologies
,”
Med. Eng. Phys.
,
31
(
8
), pp.
907
916
.10.1016/j.medengphy.2009.06.009
16.
Volandri
,
G.
,
Di Puccio
,
F.
,
Forte
,
P.
, and
Manetti
,
S.
,
2012
, “
Model-Oriented Review and Multi-Body Simulation of the Ossicular Chain of the Human Middle Ear
,”
Med. Eng. Phys.
,
34
(
9
), pp.
1339
1355
.10.1016/j.medengphy.2012.02.011
17.
Sackmann
,
B.
,
Dalhoff
,
E.
, and
Lauxmann
,
M.
,
2019
, “
Model-Based Hearing Diagnostics Based on Wideband Tympanometry Measurements Utilizing Fuzzy Arithmetic
,”
Hear. Res.
,
378
, pp.
126
138
.10.1016/j.heares.2019.02.011
18.
Merchant
,
G. R.
,
2014
, “
Functional Measurements of Ear Pathology in Patients and Cadaveric Preparations
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
19.
Voss
,
S. E.
,
Horton
,
N. J.
,
Woodbury
,
R. R.
, and
Sheffield
,
K. N.
,
2008
, “
Sources of Variability in Reflectance Measurements on Normal Cadaver Ears
,”
Ear Hear.
,
29
(
4
), pp.
651
665
.10.1097/AUD.0b013e318174f07c
20.
Stepp
,
C. E.
, and
Voss
,
S. E.
,
2005
, “
Acoustics of the Human Middle-Ear Air Space
,”
J. Acoust. Soc. Am.
,
118
(
2
), pp.
861
871
.10.1121/1.1974730
21.
Keefe
,
D. H.
,
2015
, “
Acoustical Transmission-Line Model of the Middle-Ear Cavities and Mastoid Air Cells
,”
J. Acoust. Soc. Am.
,
137
(
4
), pp.
1877
1887
.10.1121/1.4916200
22.
Moller
,
A. R.
,
1965
, “
An Experimental Study of the Acoustic Impedance of the Middle Ear and Its Transmission Properties
,”
Acta Oto-Laryngol
,
60
, pp.
129
149
.10.3109/00016486509126996
23.
Zwislocki
,
J.
,
1962
, “
Analysis of the Middle–Ear Function. Part i: Input Impedance
,”
J. Acoust. Soc. Am.
,
34
(
9B
), pp.
1514
1523
.10.1121/1.1918382
24.
Ihrle
,
S.
,
Lauxmann
,
M.
,
Eiber
,
A.
, and
Eberhard
,
P.
,
2013
, “
Nonlinear Modelling of the Middle Ear as an Elastic Multibody System—Applying Model Order Reduction to Acousto-Structural Coupled Systems
,”
J. Comput. Appl. Math.
,
246
, pp.
18
26
.10.1016/j.cam.2012.07.010
25.
Sackmann
,
B.
,
Warnholtz
,
B.
,
Sim
,
J. H.
,
Burovikhin
,
D.
,
Dalhoff
,
E.
,
Eberhard
,
P.
, and
Lauxmann
,
M.
,
2020
, “
Investigation of Tympanic Membrane Influences on Middle-Ear Impedance Measurements and Simulations
,”
Multibody Dynamics 2019, Vol. 53 of Computational Methods in Applied Sciences
,
A.
Kecskeméthy
and
F.
Geu Flores
, eds.,
Springer International Publishing
,
Cham
, pp.
3
10
.
26.
Altair
,
2021
, “Optistruct 2021 User Guide,”
Altair Engineering Inc
,
Troy, MI
, accessed Sept. 23, 2021, www.altair.com/optistruct
27.
van der Jeught
,
S.
,
Dirckx
,
J. J. J.
,
Aerts
,
J. R. M.
,
Bradu
,
A.
,
Podoleanu
,
A. G. H.
, and
Buytaert
,
J. A. N.
,
2013
, “
Full-Field Thickness Distribution of Human Tympanic Membrane Obtained With Optical Coherence Tomography
,”
J. Assoc. Res. Otolaryngology
,
14
(
4
), pp.
483
494
.10.1007/s10162-013-0394-z
28.
Calero
,
D.
,
Lobato
,
L.
,
Paul
,
S.
, and
Cordioli
,
J. A.
,
2020
, “
Analysis of the Human Middle Ear Dynamics Through Multi-Body Modeling
,”
ASME J. Biomech. Eng.
,
142
(
7
), p.
071012
.10.1115/1.4046689
29.
Lauxmann
,
M.
,
Eiber
,
A.
,
Haag
,
F.
, and
Ihrle
,
S.
,
2014
, “
Nonlinear Stiffness Characteristics of the Annular Ligament
,”
J. Acoust. Soc. Am.
,
136
(
4
), pp.
1756
1767
.10.1121/1.4895696
30.
Lauxmann
,
M.
,
2012
, “
Nichtlineare Modellierung des Mittelohrs und seiner angrenzenden Strukturen
,”
Ph. D. thesis, Vol.
27
of
Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart
,
Shaker, Aachen
.
31.
von Békésy
,
G.
,
1960
,
Experiments in Hearing
,
McGraw-Hill
,
New York
.
32.
Kirikae
,
I.
,
1960
,
The Structure and Function of the Middle Ear
,
University of Tokyo Press
, Tokyo, Japan.
33.
Cheng
,
T.
,
Dai
,
C.
, and
Gan
,
R. Z.
,
2007
, “
Viscoelastic Properties of Human Tympanic Membrane
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
305
314
.10.1007/s10439-006-9227-0
34.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2013
, “
Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
205
214
.10.1007/s10439-012-0624-2
35.
Lang
,
J.
,
1992
,
Klinische Anatomie Des Ohres
,
Springer
,
Vienna, Austria
.
36.
Sim
,
J. H.
, and
Puria
,
S.
,
2008
, “
Soft Tissue Morphometry of the Malleus-Incus Complex From Micro-ct Imaging
,”
J. Assoc. Res. Otolaryngol.
,
9
(
1
), pp.
5
21
.10.1007/s10162-007-0103-x
37.
Caminos
,
L.
,
Garcia-Manrique
,
J.
,
Lima-Rodriguez
,
A.
, and
Gonzalez-Herrera
,
A.
,
2018
, “
Analysis of the Mechanical Properties of the Human Tympanic Membrane and Its Influence on the Dynamic Behaviour of the Human Hearing System
,”
Appl. Bionics Biomech.
,
2018
, pp.
1
12
.10.1155/2018/1736957
38.
Sobol
,
I. M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
.http://www.andreasaltelli.eu/file/repository/sobol1993.pdf
39.
Marelli
,
S.
,
Lamas
,
C.
,
Konakli
,
K.
,
Mylonas
,
C.
,
Wiederkehr
,
P.
, and
Sudret
,
B.
, “
Uqlab User Manual—Sensitivity Analysis
,”
Report No. uqlab-v1.3-106.
40.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in Matlab
,”
Proceedings of 2nd International Conference on Vulnerability, Risk Analysis and Management (ICVRAM2014)
, Liverpool, UK, July 13–16, pp.
2554
2563
.
41.
Janon
,
A.
,
Klein
,
T.
,
Lagnoux
,
A.
,
Nodet
,
M.
, and
Prieur
,
C.
,
2014
, “
Asymptotic Normality and Efficiency of Two Sobol Index Estimators
,”
ESAIM: Probab. Stat.
,
18
, pp.
342
364
.10.1051/ps/2013040
42.
Amestoy
,
P. R.
,
Duff
,
I. S.
,
L'Excellent
,
J.-Y.
, and
Koster
,
J.
,
2001
, “
A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling
,”
SIAM J. Matrix Anal. Appl.
,
23
(
1
), pp.
15
41
.10.1137/S0895479899358194
43.
Lee
,
D.
, and
Ahn
,
T.-S.
,
2015
, “
Statistical Calibration of a Finite Element Model for Human Middle Ear
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
2803
2815
.10.1007/s12206-015-0609-9
44.
Lauxmann
,
M.
,
Eiber
,
A.
,
Heckeler
,
C.
,
Ihrle
,
S.
,
Chatzimichalis
,
M.
,
Huber
,
A.
, and
Sim
,
J. H.
,
2012
, “
In-Plane Motions of the Stapes in Human Ears
,”
J. Acoust. Soc. Am.
,
132
(
5
), pp.
3280
3291
.10.1121/1.4756925
45.
Koike
,
T.
,
Wada
,
H.
, and
Kobayashi
,
T.
,
2002
, “
Modeling of the Human Middle Ear Using the Finite-Element Method
,”
J. Acoust. Soc. Am.
,
111
(
3
), pp.
1306
1317
.10.1121/1.1451073
46.
Nakajima
,
H. H.
,
Ravicz
,
M. E.
,
Merchant
,
S. N.
,
Peake
,
W. T.
, and
Rosowski
,
J. J.
,
2005
, “
Experimental Ossicular Fixations and the Middle Ear's Response to Sound: Evidence for a Flexible Ossicular Chain
,”
Hear. Res.
,
204
(
1–2
), pp.
60
77
.10.1016/j.heares.2005.01.002
47.
Nakajima
,
H. H.
,
Ravicz
,
M. E.
,
Rosowski
,
J. J.
,
Peake
,
W. T.
, and
Merchant
,
S. N.
,
2005
, “
Experimental and Clinical Studies of Malleus Fixation
,”
Laryngoscope
,
115
(
1
), pp.
147
154
.10.1097/01.mlg.0000150692.23506.b7
48.
Dai
,
C.
,
Cheng
,
T.
,
Wood
,
M. W.
, and
Gan
,
R. Z.
,
2007
, “
Fixation and Detachment of Superior and Anterior Malleolar Ligaments in Human Middle Ear: Experiment and Modeling
,”
Hear. Res.
,
230
(
1–2
), pp.
24
33
.10.1016/j.heares.2007.03.006
49.
Tang
,
H.
,
Razavi
,
P.
,
Pooladvand
,
K.
,
Psota
,
P.
,
Maftoon
,
N.
,
Rosowski
,
J. J.
,
Furlong
,
C.
, and
Cheng
,
J. T.
,
2019
, “
High-Speed Holographic Shape and Full-Field Displacement Measurements of the Tympanic Membrane in Normal and Experimentally Simulated Pathological Ears
,”
Appl. Sci.
,
9
(
14
), p.
2809
.10.3390/app9142809
50.
Cheng
,
J. T.
,
Hamade
,
M.
,
Merchant
,
S. N.
,
Rosowski
,
J. J.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2013
, “
Wave Motion on the Surface of the Human Tympanic Membrane: Holographic Measurement and Modeling Analysis
,”
J. Acoust. Soc. Am.
,
133
(
2
), pp.
918
937
.10.1121/1.4773263
51.
Rohani
,
S. A.
,
Ghomashchi
,
S.
,
Agrawal
,
S. K.
, and
Ladak
,
H. M.
,
2017
, “
Estimation of the Young's Modulus of the Human Pars Tensa Using in-Situ Pressurization and Inverse Finite-Element Analysis
,”
Hear. Res.
,
345
, pp.
69
78
.10.1016/j.heares.2017.01.002
52.
Aernouts
,
J.
,
Aerts
,
J. R. M.
, and
Dirckx
,
J. J. J.
,
2012
, “
Mechanical Properties of Human Tympanic Membrane in the Quasi-Static Regime From in Situ Point Indentation Measurements
,”
Hear. Res.
,
290
(
1–2
), pp.
45
54
.10.1016/j.heares.2012.05.001
You do not currently have access to this content.