Abstract

In the native vasculature, flowing blood produces a frictional force on vessel walls that affects endothelial cell function and phenotype. In the arterial system, the vasculature's local geometry directly influences variations in flow profiles and shear stress magnitudes. Straight arterial sections with pulsatile shear stress have been shown to promote an athero-protective endothelial phenotype. Conversely, areas with more complex geometry, such as arterial bifurcations and branch points with disturbed flow patterns and lower, oscillatory shear stress, typically lead to endothelial dysfunction and the pathogenesis of cardiovascular diseases. Many studies have investigated the regulation of endothelial responses to various shear stress environments. Importantly, the accurate in vitro simulation of in vivo hemodynamics is critical to the deeper understanding of mechanotransduction through the proper design and use of flow chamber devices. In this review, we describe several flow chamber apparatuses and their fluid mechanics design parameters, including parallel-plate flow chambers, cone-and-plate devices, and microfluidic devices. In addition, chamber-specific design criteria and relevant equations are defined in detail for the accurate simulation of shear stress environments to study endothelial cell responses.

References

1.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
(
3
), pp.
519
560
.10.1152/physrev.1995.75.3.519
2.
Natarajan
,
M.
,
Aravindan
,
N.
,
Sprague
,
E. A.
, and
Mohan
,
S.
,
2016
, “
Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium
,”
Radiat. Res.
,
186
(
2
), pp.
175
188
.10.1667/RR14410.1
3.
Paszkowiak
,
J. J.
, and
Dardik
,
A.
,
2003
, “
Arterial Wall Shear Stress: Observations From the Bench to the Bedside
,”
Vasc. Endovascular Surg.
,
37
(
1
), pp.
47
57
.10.1177/153857440303700107
4.
Chien
,
S.
,
2007
, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol. Circ. Physiol.
,
292
(
3
), pp.
H1209
H1224
.10.1152/ajpheart.01047.2006
5.
Chatterjee
,
S.
, and
Fisher
,
A. B.
,
2014
, “
Mechanotransduction in the Endothelium: Role of Membrane Proteins and Reactive Oxygen Species in Sensing, Transduction, and Transmission of the Signal With Altered Blood Flow
,”
Antioxid. Redox Signal.
,
20
(
6
), pp.
899
913
.10.1089/ars.2013.5624
6.
Caligiuri
,
G.
,
2019
, “
Mechanotransduction, Immunoregulation, and Metabolic Functions of CD31 in Cardiovascular Pathophysiology
,”
Cardiovasc. Res.
,
115
(
9
), pp.
1425
1434
.10.1093/cvr/cvz132
7.
Ballermann
,
B. J.
,
Dardik
,
A.
,
Eng
,
E.
, and
Liu
,
A.
,
1998
, “
Shear Stress and the Endothelium
,”
Kidney Int.
,
54
, pp.
S100
S108
.10.1046/j.1523-1755.1998.06720.x
8.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
9.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1993
, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
588
594
.10.1115/1.2895545
10.
Pohl
,
U.
,
Holtz
,
J.
,
Busse
,
R.
, and
Bassenge
,
E.
,
1986
, “
Crucial Role of Endothelium in the Vasodilator Response to Increased Flow In Vivo
,”
Hypertension
,
8
(
1
), pp.
37
44
.10.1161/01.HYP.8.1.37
11.
Kamiya
,
A.
,
Bukhari
,
R.
, and
Togawa
,
T.
,
1984
, “
Adaptive Regulation of Wall Shear Stress Optimizing Vascular Tree Function
,”
Bull. Math. Biol.
,
46
(
1
), pp.
127
137
.10.1016/S0092-8240(84)80038-5
12.
Traub
,
O.
, and
Berk
,
B. C.
,
1998
, “
Laminar Shear Stress: Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force
,”
Arterioscler. Thromb. Vasc. Biol.
,
18
(
5
), pp.
677
685
.10.1161/01.ATV.18.5.677
13.
Hagen
,
M. W.
, and
Hinds
,
M. T.
,
2019
, “
Static Spatial Growth Restriction Micropatterning of Endothelial Colony Forming Cells Influences Their Morphology and Gene Expression
,”
PLoS One
,
14
(
6
), p.
e0218197
.10.1371/journal.pone.0218197
14.
Vartanian
,
K. B.
,
Kirkpatrick
,
S. J.
,
Hanson
,
S. R.
, and
Hinds
,
M. T.
,
2008
, “
Endothelial Cell Cytoskeletal Alignment Independent of Fluid Shear Stress on Micropatterned Surfaces
,”
Biochem. Biophys. Res. Commun.
,
371
(
4
), pp.
787
792
.10.1016/j.bbrc.2008.04.167
15.
Shyy
,
J. Y. J.
, and
Chien
,
S.
,
2002
, “
Role of Integrins in Endothelial Mechanosensing of Shear Stress
,”
Circ. Res.
,
91
(
9
), pp.
769
775
.10.1161/01.RES.0000038487.19924.18
16.
Rezgaoui
,
M.
,
Rodriguez
,
A.
,
Herlitz
,
K.
, and
Escudero
,
C.
,
2018
, “
Sensing Fluid-Shear Stress in the Endothelial System With a Special Emphasis on the Primary Cilium
,”
Endothelial Dysfunction—Old Concepts and New Challenges
, IntechOpen, London, UK.
17.
Dewey
,
C. F.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, and
Davies
,
P. F.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
177
185
.10.1115/1.3138276
18.
Ebong
,
E. E.
,
Lopez-Quintero
,
S. V.
,
Rizzo
,
V.
,
Spray
,
D. C.
, and
Tarbell
,
J. M.
,
2014
, “
Shear-Induced Endothelial NOS Activation and Remodeling Via Heparan Sulfate, Glypican-1, and Syndecan-1
,”
Integr. Biol.
,
6
(
3
), pp.
338
347
.10.1039/C3IB40199E
19.
Chatterjee
,
S.
,
2018
, “
Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways
,”
Front. Physiol.
,
9
, p.
524
.10.3389/fphys.2018.00524
20.
Flaherty
,
J. T.
,
Pierce
,
J. E.
,
Ferrans
,
V.
,
Patel
,
D. J.
,
Tucker
,
K. W.
, and
Fry
,
D. L.
,
1972
, “
Endothelial Nuclear Patterns in the Canine Arterial Tree With Particular Reference to Hemodynamic Events
,”
Circ. Res.
,
30
(
1
), pp.
23
33
.10.1161/01.RES.30.1.23
21.
Wang
,
C.
,
Baker
,
B. M.
,
Chen
,
C. S.
, and
Schwartz
,
M. A.
,
2013
, “
Endothelial Cell Sensing of Flow Direction
,”
Arterioscler. Thromb. Vasc. Biol.
,
33
(
9
), pp.
2130
2136
.10.1161/ATVBAHA.113.301826
22.
DePaola
,
N.
,
Gimbrone
,
M. A.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
(
11
), pp.
1254
1257
.10.1161/01.ATV.12.11.1254
23.
Lu
,
Y.
,
Li
,
W.-Q.
,
Oraifige
,
I.
, and
Wang
,
W.
,
2014
, “
Converging Parallel Plate Flow Chambers for Studies on the Effect of the Spatial Gradient of Wall Shear Stress on Endothelial Cells
,”
J. Biosci. Med.
,
02
(
02
), pp.
50
56
.10.1115/1.4051765
24.
Wojciak-Stothard
,
B.
, and
Ridley
,
A. J.
,
2003
, “
Shear Stress–Induced Endothelial Cell Polarization is Mediated by Rho and Rac but Not Cdc42 or PI 3-Kinases
,”
J. Cell Biol.
,
161
(
2
), pp.
429
439
.10.1083/jcb.200210135
25.
van Kooten
,
T. G.
,
Schakenraad
,
J. M.
,
Van der Mei
,
H. C.
, and
Busscher
,
H. J.
,
1992
, “
Development and Use of a Parallel-Plate Flow Chamber for Studying Cellular Adhesion to Solid Surfaces
,”
J. Biomed. Mater. Res.
,
26
(
6
), pp.
725
738
.10.1002/jbm.820260604
26.
Dolan
,
J. M.
,
Sim
,
F. J.
,
Meng
,
H.
, and
Kolega
,
J.
,
2012
, “
Endothelial Cells Express a Unique Transcriptional Profile Under Very High Wall Shear Stress Known to Induce Expansive Arterial Remodeling
,”
Am. J. Physiol. Cell Physiol.
,
302
(
8
), pp.
C1109
C1118
.10.1152/ajpcell.00369.2011
27.
Frangos
,
J. A.
,
McIntire
,
L. V.
, and
Eskin
,
S. G.
,
1988
, “
Shear Stress Induced Stimulation of Mammalian Cell Metabolism
,”
Biotechnol. Bioeng.
,
32
(
8
), pp.
1053
1060
.10.1002/bit.260320812
28.
Wang
,
Y.-X.
,
Xiang
,
C.
,
Liu
,
B.
,
Zhu
,
Y.
,
Luan
,
Y.
,
Liu
,
S.-T.
, and
Qin
,
K.-R.
,
2016
, “
A Multi-Component Parallel-Plate Flow Chamber System for Studying the Effect of Exercise-Induced Wall Shear Stress on Endothelial Cells
,”
Biomed. Eng. Online
,
15
(
Suppl 2
), p.
154
.10.1186/s12938-016-0273-z
29.
Balaguru
,
U. M.
,
Sundaresan
,
L.
,
Manivannan
,
J.
,
Majunathan
,
R.
,
Mani
,
K.
,
Swaminathan
,
A.
,
Venkatesan
,
S.
,
Kasiviswanathan
,
D.
, and
Chatterjee
,
S.
,
2016
, “
Disturbed Flow Mediated Modulation of Shear Forces on Endothelial Plane: A Proposed Model for Studying Endothelium Around Atherosclerotic Plaques
,”
Sci. Rep.
,
6
(
1
), p.
27304
.10.1038/srep27304
30.
Erbeldinger
,
N.
,
Rapp
,
F.
,
Ktitareva
,
S.
,
Wendel
,
P.
,
Bothe
,
A. S.
,
Dettmering
,
T.
,
Durante
,
M.
,
Friedrich
,
T.
,
Bertulat
,
B.
,
Meyer
,
S.
,
Cardoso
,
M. C.
,
Hehlgans
,
S.
,
Rödel
,
F.
, and
Fournier
,
C.
,
2017
, “
Measuring Leukocyte Adhesion to (Primary) Endothelial Cells After Photon and Charged Particle Exposure With a Dedicated Laminar Flow Chamber
,”
Front. Immunol.
,
8
(
JUN
), p.
627
.
31.
Koo
,
M.-A.
,
Kang
,
J.
,
Lee
,
M.
,
Seo
,
H.
,
Kwon
,
B.-J.
,
You
,
K.
,
Kim
,
M.
,
Kim
,
D.
, and
Park
,
J.-C.
,
2014
, “
Stimulated Migration and Penetration of Vascular Endothelial Cells Into Poly (L-Lactic Acid) Scaffolds Under Flow Conditions
,”
Biomater. Res.
,
18
(
1
), p.
7
.10.1186/2055-7124-18-7
32.
Qin
,
K.
,
Hu
,
X.
, and
Liu
,
Z.
,
2007
, “
Analysis of Pulsatile Flow in the Parallel-Plate Flow Chamber With Spatial Shear Stress Gradient
,”
J. Hydrodyn
,.,
19
(
1
), pp.
113
120
.10.1016/S1001-6058(07)60036-5
33.
Wong
,
A. K.
,
LLanos
,
P.
,
Boroda
,
N.
,
Rosenberg
,
S. R.
, and
Rabbany
,
S. Y.
,
2016
, “
A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress
,”
Cell. Mol. Bioeng.
,
9
(
1
), pp.
127
138
.10.1007/s12195-015-0424-5
34.
Kairong
,
Q.
,
Weiyuan
,
J.
,
Xixi
,
L.
, and
Zhaorong
,
L.
,
1998
, “
On Analysis of the Steady Flow in an Irrectangular Parallel-Plate Flow Chamber
,”
Appl. Math. Mech.
,
19
(
9
), pp.
851
859
.10.1007/BF02458240
35.
Shen
,
L.
,
Qiao
,
A.
,
Ding
,
H.
,
Mo
,
G.
,
Xu
,
G.
,
Du
,
Y.
,
Li
,
M.
,
Chen
,
Z.
, and
Zeng
,
Y.
,
2006
, “
An Apparatus for Studying the Response of Cultured Endothelial Cells to Stresses
,”
Aust. Phys. Eng. Sci. Med.
,
29
(
2
), pp.
196
202
.10.1007/BF03178893
36.
Levesque
,
M. J.
, and
Nerem
,
R. M.
,
1985
, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
,
107
(
4
), pp.
341
347
.10.1115/1.3138567
37.
Nauman
,
E. A.
,
Risic
,
K. J.
,
Keaveny
,
T. M.
, and
Satcher
,
R. L.
,
1999
, “
Quantitative Assessment of Steady and Pulsatile Flow Fields in a Parallel Plate Flow Chamber
,”
Ann. Biomed. Eng.
,
27
(
2
), pp.
194
199
.10.1114/1.173
38.
Rashad
,
S.
,
Han
,
X.
,
Saqr
,
K.
,
Tupin
,
S.
,
Ohta
,
M.
,
Niizuma
,
K.
, and
Tominaga
,
T.
,
2020
, “
Epigenetic Response of Endothelial Cells to Different Wall Shear Stress Magnitudes: A Report of New Mechano‐miRNAs
,”
J. Cell. Physiol.
,
235
(
11
), pp.
7827
7839
.10.1002/jcp.29436
39.
Yoshino
,
D.
,
Sakamoto
,
N.
,
Takahashi
,
K.
,
Eri
,
I.
, and
Sato
,
M.
,
2013
, “
Development of Novel Flow Chamber to Study Endothelial Cell Morphology: Effects of Shear Flow With Uniform Spatial Gradient on Distribution of Focal Adhesion
,”
J. Biomech. Sci. Eng.
,
8
(
3
), pp.
233
243
.10.1299/jbse.8.233
40.
Dolan
,
J. M.
,
Meng
,
H.
,
Singh
,
S.
,
Paluch
,
R.
, and
Kolega
,
J.
,
2011
, “
High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1620
1631
.10.1007/s10439-011-0267-8
41.
Uzarski
,
J. S.
,
Scott
,
E. W.
, and
McFetridge
,
P. S.
,
2013
, “
Adaptation of Endothelial Cells to Physiologically-Modeled, Variable Shear Stress
,”
PLoS One
,
8
(
2
), p.
e57004
.10.1371/journal.pone.0057004
42.
McCormick
,
S. M.
,
Seil
,
J. T.
,
Smith
,
D. S.
,
Tan
,
F.
, and
Loth
,
F.
,
2012
, “
Transitional Flow in a Cylindrical Flow Chamber for Studies at the Cellular Level
,”
Cardiovasc. Eng. Technol.
,
3
(
4
), pp.
439
449
.10.1007/s13239-012-0107-5
43.
Oertel
,
H.
, ed.,
2004
, “
Biofluid Mechanics of Blood Circulation
,”
Prandtl's Essentials of Fluid Mechanics
,
Springer
,
New York
, pp.
615
654
.
44.
Lane
,
W. O.
,
Jantzen
,
A. E.
,
Carlon
,
T. A.
,
Jamiolkowski
,
R. M.
,
Grenet
,
J. E.
,
Ley
,
M. M.
,
Haseltine
,
J. M.
,
Galinat
,
L. J.
,
Lin
,
F.-H.
,
Allen
,
J. D.
,
Truskey
,
G. A.
, and
Achneck
,
H. E.
,
2012
, “
Parallel-Plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells Under Laminar Flow Shear Stress
,”
J. Vis. Exp.
,
59
, p.
e3349
.10.3791/334
45.
Putra
,
N. K.
,
Wang
,
Z.
,
Anzai
,
H.
, and
Ohta
,
M.
,
2018
, “
Computational Fluid Dynamics Analysis to Predict Endothelial Cells Migration During Flow Exposure Experiment With Placement of Two Stent Wires
,” 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Honolulu, HI, July 18–21, pp.
5454
5457
.10.1109/EMBC.2018.8513517
46.
Usami
,
S.
,
Chen
,
H. H.
,
Zhao
,
Y.
,
Chien
,
S.
, and
Skalak
,
R.
,
1993
, “
Design and Construction of a Linear Shear Stress Flow Chamber
,”
Ann. Biomed. Eng.
,
21
(
1
), pp.
77
83
.10.1007/BF02368167
47.
DeVerse
,
J. S.
,
Sandhu
,
A. S.
,
Mendoza
,
N.
,
Edwards
,
C. M.
,
Sun
,
C.
,
Simon
,
S. I.
, and
Passerini
,
A. G.
,
2013
, “
Shear Stress Modulates VCAM-1 Expression in Response to TNF-α and Dietary Lipids Via Interferon Regulatory Factor-1 in Cultured Endothelium
,”
Am. J. Physiol. Circ. Physiol.
,
305
(
8
), pp.
H1149
H1157
.10.1152/ajpheart.00311.2013
48.
Tsou
,
J. K.
,
Gower
,
R. M.
,
Ting
,
H. J.
,
Schaff
,
U. Y.
,
Insana
,
M. F.
,
Passerini
,
A. G.
, and
Simon
,
S. I.
,
2008
, “
Spatial Regulation of Inflammation by Human Aortic Endothelial Cells in a Linear Gradient of Shear Stress
,”
Microcirculation
,
15
(
4
), pp.
311
323
.10.1080/10739680701724359
49.
Bailey
,
K. A.
,
Moreno
,
E.
,
Haj
,
F. G.
,
Simon
,
S. I.
, and
Passerini
,
A. G.
,
2019
, “
Mechanoregulation of P38 Activity Enhances Endoplasmic Reticulum Stress‐Mediated Inflammation by Arterial Endothelium
,”
FASEB J.
,
33
(
11
), pp.
12888
12899
.10.1096/fj.201900236R
50.
LaMack
,
J. A.
, and
Friedman
,
M. H.
,
2007
, “
Individual and Combined Effects of Shear Stress Magnitude and Spatial Gradient on Endothelial Cell Gene Expression
,”
Am. J. Physiol. Circ. Physiol.
,
293
(
5
), pp.
H2853
H2859
.10.1152/ajpheart.00244.2007
51.
Franzoni
,
M.
,
O'Connor
,
D. T.
,
Marcar
,
L.
,
Power
,
D.
,
Moloney
,
M. A.
,
Kavanagh
,
E. G.
,
Leask
,
R. L.
,
Nolan
,
J.
,
Kiely
,
P. A.
, and
Walsh
,
M. T.
,
2020
, “
The Presence of a High Peak Feature Within Low-Average Shear Stimuli Induces Quiescence in Venous Endothelial Cells
,”
Ann. Biomed. Eng.
,
48
(
2
), pp.
582
594
.10.1007/s10439-019-02371-5
52.
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2012
, “
Disturbed Flow in Radial-Cephalic Arteriovenous Fistulae for Haemodialysis: Low and Oscillating Shear Stress Locates the Sites of Stenosis
,”
Nephrol. Dial. Transplant.
,
27
(
1
), pp.
358
368
.10.1093/ndt/gfr342
53.
Dolan
,
J. M.
,
Kolega
,
J.
, and
Meng
,
H.
,
2013
, “
High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1411
1427
.10.1007/s10439-012-0695-0
54.
Sakamoto
,
N.
,
Saito
,
N.
,
Han
,
X.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2010
, “
Effect of Spatial Gradient in Fluid Shear Stress on Morphological Changes in Endothelial Cells in Response to Flow
,”
Biochem. Biophys. Res. Commun.
,
395
(
2
), pp.
264
269
.10.1016/j.bbrc.2010.04.002
55.
Givens
,
C.
, and
Tzima
,
E.
,
2016
, “
Endothelial Mechanosignaling: Does One Sensor Fit All?
,”
Antioxid. Redox Signal.
,
25
(
7
), pp.
373
388
.10.1089/ars.2015.6493
56.
Dai
,
G.
,
Kaazempur-Mofrad
,
M. R.
,
Kamm
,
R. D.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
,
2004
, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived From Atherosclerosis-Prone and Atherosclerosis-Protected Regions of the Human Vasculature
,”
Cardiovasc. Pathol.
,
13
(
3
), p.
26
.10.1016/j.carpath.2004.03.070
57.
Chiu
,
J.-J.
,
Chen
,
C.-N.
,
Lee
,
P.-L.
,
Tsair Yang
,
C.
,
Sheng Chuang
,
H.
,
Chien
,
S.
, and
Usami
,
S.
,
2003
, “
Analysis of the Effect of Disturbed Flow on Monocytic Adhesion to Endothelial Cells
,”
J. Biomech.
,
36
(
12
), pp.
1883
1895
.10.1016/S0021-9290(03)00210-0
58.
Chiu
,
J.-J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.10.1152/physrev.00047.2009
59.
Chien
,
S.
,
2008
, “
Effects of Disturbed Flow on Endothelial Cells
,”
Ann. Biomed. Eng.
,
36
(
4
), pp.
554
562
.10.1007/s10439-007-9426-3
60.
White
,
C. R.
,
Haidekker
,
M.
,
Bao
,
X.
, and
Frangos
,
J. A.
,
2001
, “
Temporal Gradients in Shear, but Not Spatial Gradients, Stimulate Endothelial Cell Proliferation
,”
Circulation
,
103
(
20
), pp.
2508
2513
.10.1161/01.CIR.103.20.2508
61.
Durst
,
F.
, and
Pereira
,
J. C. F.
,
1988
, “
Time-Dependent Laminar Backward-Facing Step Flow in a Two-Dimensional Duct
,”
ASME J. Fluids Eng.
,
110
(
3
), pp.
289
296
.10.1115/1.3243547
62.
Haidekker
,
M. A.
,
White
,
C. R.
, and
Frangos
,
J. A.
,
2001
, “
Analysis of Temporal Shear Stress Gradients During the Onset Phase of Flow Over a Backward-Facing Step
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
455
463
.10.1115/1.1389460
63.
White
,
C. R.
,
Stevens
,
H. Y.
,
Haidekker
,
M.
, and
Frangos
,
J. A.
,
2005
, “
Temporal Gradients in Shear, but Not Spatial Gradients, Stimulate ERK1/2 Activation in Human Endothelial Cells
,”
Am. J. Physiol. Circ. Physiol.
,
289
(
6
), pp.
H2350
H2355
.10.1152/ajpheart.01229.2004
64.
Arslan
,
N.
,
Isik
,
S.
, and
Uykan
,
Ö.
,
2010
, “
Steady and Disturbed Flow Effects on Human Umbilical Vein Endothelial Cells (HUVECs) in Vascular System: An Experimental Study
,”
Acta Bioeng. Biomech.
,
12
(
4
), pp.
3
9
.http://www.actabio.pwr.wroc.pl/Vol12No4/1.pdf
65.
Biswas
,
G.
,
Breuer
,
M.
, and
Durst
,
F.
,
2004
, “
Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
362
374
.10.1115/1.1760532
66.
Abu-Mulaweh
,
H. I.
,
2003
, “
A Review of Research on Laminar Mixed Convection Flow Over Backward- and Forward-Facing Steps
,”
Int. J. Therm. Sci.
,
42
(
9
), pp.
897
909
.10.1016/S1290-0729(03)00062-0
67.
Kitoh
,
A.
,
Sugawara
,
K.
,
Yoshikawa
,
H.
, and
Ota
,
T.
,
2007
, “
Expansion Ratio Effects on Three-Dimensional Separated Flow and Heat Transfer Around Backward-Facing Steps
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
9
), pp.
1141
1155
.10.1115/1.2739619
68.
Barstad
,
R. M.
,
Roald
,
H. E.
,
Cui
,
Y.
,
Turitto
,
V. T.
, and
Sakariassen
,
K. S.
,
1994
, “
A Perfusion Chamber Developed to Investigate Thrombus Formation and Shear Profiles in Flowing Native Human Blood at the Apex of Well-Defined Stenoses
,”
Arterioscler. Thromb.
,
14
(
12
), pp.
1984
1991
.10.1161/01.ATV.14.12.1984
69.
Barstad
,
R. M.
,
Kierulf
,
P.
, and
Sakariassen
,
K. S.
,
1996
, “
Collagen Induced Thrombus Formation at the Apex of Eccentric Stenoses—A Time Course Study With Non-Anticoagulated Human Blood
,”
Thromb. Haemost.
,
75
(
04
), pp.
685
692
.10.1055/s-0038-1650343
70.
Watkins
,
N. V.
,
Caro
,
C. G.
, and
Wang
,
W.
,
2002
, “
Parallel-Plate Flow Chamber for Studies of 3D Flow-Endothelium Interaction
,”
Biorheology
,
39
(
3–4
), pp.
337
342
.https://content.iospress.com/journals/biorheology/39/3-4
71.
Szymanski
,
M. P.
,
Metaxa
,
E.
,
Meng
,
H.
, and
Kolega
,
J.
,
2008
, “
Endothelial Cell Layer Subjected to Impinging Flow Mimicking the Apex of an Arterial Bifurcation
,”
Ann. Biomed. Eng.
,
36
(
10
), pp.
1681
1689
.10.1007/s10439-008-9540-x
72.
Crouch
,
C. F.
,
Fowler
,
H. W.
, and
Spier
,
R. E.
,
1985
, “
The Adhesion of Animal Cells to Surfaces: The Measurement of Critical Surface Shear Stress Permitting Attachment or Causing Detachment
,”
J. Chem. Technol. Biotechnol. Biotechnol.
,
35
(
4
), pp.
273
281
.10.1002/jctb.280350408
73.
Nakayama
,
K. H.
,
Surya
,
V. N.
,
Gole
,
M.
,
Walker
,
T. W.
,
Yang
,
W.
,
Lai
,
E. S.
,
Ostrowski
,
M. A.
,
Fuller
,
G. G.
,
Dunn
,
A. R.
, and
Huang
,
N. F.
,
2016
, “
Nanoscale Patterning of Extracellular Matrix Alters Endothelial Function under Shear Stress
,”
Nano Lett.
,
16
(
1
), pp.
410
419
.10.1021/acs.nanolett.5b04028
74.
Ostrowski
,
M. A.
,
Huang
,
E. Y.
,
Surya
,
V. N.
,
Poplawski
,
C.
,
Barakat
,
J. M.
,
Lin
,
G. L.
,
Fuller
,
G. G.
, and
Dunn
,
A. R.
,
2016
, “
Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients
,”
Ann. Biomed. Eng.
,
44
(
7
), pp.
2261
2272
.10.1007/s10439-015-1500-7
75.
Yapici
,
S.
,
Kuslu
,
S.
,
Ozmetin
,
C.
,
Ersahan
,
H.
, and
Pekdemir
,
T.
,
1999
, “
Surface Shear Stress for a Submerged Jet Impingement Using Electrochemical Technique
,”
J. Appl. Electrochem.
,
29
(
2
), pp.
185
190
.10.1023/A:1003464614715
76.
Behnia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P.
,
1997
, “
Accurate Modeling of Impinging Jet Heat Transfer
,”
Cent. Turbul. Res. Annu. Res. Briefs
, pp.
149
164
https://web.stanford.edu/group/ctr/ResBriefs97/behnia.pdf.
77.
Saterbak
,
A.
, and
Lauffenburger
,
D. A.
,
1996
, “
Adhesion Mediated by Bonds in Series
,”
Biotechnol. Prog.
,
12
(
5
), pp.
682
699
.10.1021/bp960061u
78.
Koseoglu
,
M. F.
, and
Baskaya
,
S.
,
2010
, “
The Role of Jet Inlet Geometry in Impinging Jet Heat Transfer, Modeling and Experiments
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1417
1426
.10.1016/j.ijthermalsci.2010.02.009
79.
Christ
,
K. V.
, and
Turner
,
K. T.
,
2010
, “
Methods to Measure the Strength of Cell Adhesion to Substrates
,”
J. Adhes. Sci. Technol.
,
24
(
13–14
), pp.
2027
2058
.10.1163/016942410X507911
80.
Vaishnav
,
R. N.
,
Patel
,
D. J.
,
Atabek
,
H. B.
,
Deshpande
,
M. D.
,
Plowman
,
F.
, and
Vossoughi
,
J.
,
1983
, “
Determination of the Local Erosion Stress of the Canine Endothelium Using a Jet Impingement Method
,”
ASME J. Biomech. Eng.
,
105
(
1
), pp.
77
83
.10.1115/1.3138389
81.
Bouafsoun
,
A.
,
Othmane
,
A.
,
Kerkeni
,
A.
,
Jaffrézic
,
N.
, and
Ponsonnet
,
L.
,
2006
, “
Evaluation of Endothelial Cell Adherence Onto Collagen and Fibronectin: A Comparison Between Jet Impingement and Flow Chamber Techniques
,”
Mater. Sci. Eng. C
,
26
(
2–3
), pp.
260
266
.10.1016/j.msec.2005.10.051
82.
Papadaki
,
M.
, and
Mclntire
,
L. V.
,
1999
, “
Quantitative Measurement of Shear-Stress Effects on Endothelial Cells
,”
Tissue Engineering Methods and Protocols. Methods in Molecular Medicine
,
J. R.
Morgan
, and
M. L.
Yarmush
, eds.,
Humana Press
,
Totowa, NJ
, pp.
577
593
.10.1385/0-89603-516-6:577
83.
Goldstein
,
A. S.
, and
DiMilla
,
P. A.
,
1998
, “
Comparison of Converging and Diverging Radial Flow for Measuring Cell Adhesion
,”
AIChE J.
,
44
(
2
), pp.
465
473
.10.1002/aic.690440222
84.
Ostrowski
,
M. A.
,
Huang
,
N. F.
,
Walker
,
T. W.
,
Verwijlen
,
T.
,
Poplawski
,
C.
,
Khoo
,
A. S.
,
Cooke
,
J. P.
,
Fuller
,
G. G.
, and
Dunn
,
A. R.
,
2014
, “
Microvascular Endothelial Cells Migrate Upstream and Align Against the Shear Stress Field Created by Impinging Flow
,”
Biophys. J.
,
106
(
2
), pp.
366
374
.10.1016/j.bpj.2013.11.4502
85.
Diamond
,
S. L.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
,
1989
, “
Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells
,”
Science
,
243
(
4897
), pp.
1483
1485
.10.1126/science.2467379
86.
Hsieh
,
H.-J.
,
Li
,
N.-Q.
, and
Frangos
,
J. A.
,
1993
, “
Pulsatile and Steady Flow Induces C-Fos Expression in Human Endothelial Cells
,”
J. Cell. Physiol.
,
154
(
1
), pp.
143
151
.10.1002/jcp.1041540118
87.
Helmlinger
,
G.
,
Berk
,
B. C.
, and
Nerem
,
R. M.
,
1995
, “
Calcium Responses of Endothelial Cell Monolayers Subjected to Pulsatile and Steady Laminar Flow Differ
,”
Am. J. Physiol.
,
269
(
2 Pt 1
), pp.
C367
C375
.10.1152/ajpcell.1995.269.2.C367
88.
Levesque
,
M. J.
,
Sprague
,
E. A.
,
Schwartz
,
C. J.
, and
Nerem
,
R. M.
,
1989
, “
The Influence of Shear Stress on Cultured Vascular Endothelial Cells: The Stress Response of an Anchorage-Dependent Mammalian Cell
,”
Biotechnol. Prog.
,
5
(
1
), pp.
1
8
.10.1002/btpr.5420050105
89.
Frangos
,
J.
,
Eskin
,
S. G.
,
McIntire
,
L. V.
, and
Ives
,
C. L.
,
1985
, “
Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells
,”
Science
,
227
(
4693
), pp.
1477
1479
.10.1126/science.3883488
90.
Shyy
,
J. Y.
,
Lin
,
M. C.
,
Han
,
J.
,
Lu
,
Y.
,
Petrime
,
M.
, and
Chien
,
S.
,
1995
, “
The Cis-Acting Phorbol Ester ‘12-O-Tetradecanoylphorbol 13-Acetate’-Responsive Element is Involved in Shear Stress-Induced Monocyte Chemotactic Protein 1 Gene Expression
,”
Proc. Natl. Acad. Sci.
,
92
(
17
), pp.
8069
8073
.10.1073/pnas.92.17.8069
91.
Skarlatos
,
S. I.
, and
Hollis
,
T. M.
,
1987
, “
Cultured Bovine Aortic Endothelial Cells Show Increased Histamine Metabolism When Exposed to Oscillatory Shear Stress
,”
Atherosclerosis
,
64
(
1
), pp.
55
61
.10.1016/0021-9150(87)90054-2
92.
Barakat
,
A. I.
, and
Lieu
,
D. K.
,
2003
, “
Differential Responsiveness of Vascular Endothelial Cells to Different Types of Fluid Mechanical Shear Stress
,”
Cell Biochem. Biophys.
,
38
(
3
), pp.
323
343
.10.1385/CBB:38:3:323
93.
Hwang
,
J.
,
Ing
,
M. H.
,
Salazar
,
A.
,
Lassègue
,
B.
,
Griendling
,
K.
,
Navab
,
M.
,
Sevanian
,
A.
, and
Hsiai
,
T. K.
,
2003
, “
Pulsatile Versus Oscillatory Shear Stress Regulates NADPH Oxidase Subunit Expression: Implication for Native LDL Oxidation
,”
Circ. Res.
,
93
((
12
), pp.
1225
1232
.10.1161/01.RES.0000104087.29395.66
94.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.10.1113/jphysiol.1955.sp005276
95.
Hahn
,
C.
, and
Schwartz
,
M. A.
,
2009
, “
Mechanotransduction in Vascular Physiology and Atherogenesis
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
53
62
.10.1038/nrm2596
96.
Conway
,
D. E.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
,
2013
, “
Effects of Mechanical Forces on Cells and Tissues (the Liquid–Cell Interface)
,”
An Introduction to Materials in Medicine
,
Academic Press
, Waltham, MA, pp.
474
487
.10.1016/B978-0-08-087780-8.00040-1
97.
Berk
,
B. C.
,
2008
, “
Atheroprotective Signaling Mechanisms Activated by Steady Laminar Flow in Endothelial Cells
,”
Circulation
,
117
(
8
), pp.
1082
1089
.10.1161/CIRCULATIONAHA.107.720730
98.
Nerem
,
R. M.
,
1992
, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
,
114
(
3
), pp.
274
282
.10.1115/1.2891384
99.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
100.
Orr
,
A. W.
,
Stockton
,
R.
,
Simmers
,
M. B.
,
Sanders
,
J. M.
,
Sarembock
,
I. J.
,
Blackman
,
B. R.
, and
Schwartz
,
M. A.
,
2007
, “
Matrix-Specific P21-Activated Kinase Activation Regulates Vascular Permeability in Atherogenesis
,”
J. Cell Biol.
,
176
(
5
), pp.
719
727
.10.1083/jcb.200609008
101.
Thoumine
,
O.
,
Nerem
,
R. M.
, and
Girard
,
P. R.
,
1995
, “
Oscillatory Shear Stress and Hydrostatic Pressure Modulate Cell-Matrix Attachment Proteins in Cultured Endothelial Cells
,”
Vitr. Cell. Dev. Biol. Anim.
,
31
(
1
), pp.
45
54
.10.1007/BF02631337
102.
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bharadvaj
,
B. K.
,
Sottiurai
,
V. S.
,
Mabon
,
R. F.
, and
Glagov
,
S.
,
1983
, “
Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization With Flow Velocity Profiles and Wall Shear Stress
,”
Circ. Res.
,
53
(
4
), pp.
502
514
.10.1161/01.RES.53.4.502
103.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
104.
Banerjee
,
M. K.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2012
, “
Effect of Pulsatile Flow Waveform and Womersley Number on the Flow in Stenosed Arterial Geometry
,”
ISRN Biomath.
,
2012
, pp.
1
17
.10.5402/2012/853056
105.
Wong
,
P. K.
,
Johnston
,
K. W.
,
Ethier
,
C. R.
, and
Cobbold
,
R. S.
,
1991
, “
Computer Simulation of Blood Flow Patterns in Arteries of Various Geometries
,”
J. Vasc. Surg.
,
14
(
5
), pp.
658
667
.10.1016/0741-5214(91)90190-6
106.
Du
,
T.
,
Hu
,
D.
, and
Cai
,
D.
,
2015
, “
Outflow Boundary Conditions for Blood Flow in Arterial Trees
,”
PLoS One
,
10
(
5
), p.
e0128597
.10.1371/journal.pone.0128597
107.
Avari
,
H.
,
Rogers
,
K. A.
, and
Savory
,
E.
,
2018
, “
Wall Shear Stress Determination in a Small-Scale Parallel Plate Flow Chamber Using Laser Doppler Velocimetry Under Laminar, Pulsatile and Low-Reynolds Number Turbulent Flows
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061404
.10.1115/1.4039158
108.
Bacabac
,
R. G.
,
Smit
,
T. H.
,
Cowin
,
S. C.
,
Van Loon
,
J. J. W. A.
,
Nieuwstadt
,
F. T. M.
,
Heethaar
,
R.
, and
Klein-Nulend
,
J.
,
2005
, “
Dynamic Shear Stress in Parallel-Plate Flow Chambers
,”
J. Biomech.
,
38
(
1
), pp.
159
167
.10.1016/j.jbiomech.2004.03.020
109.
Tefft
,
B. J.
,
Kopacz
,
A. M.
,
Liu
,
W. K.
, and
Liu
,
S. Q.
,
2013
, “
Experimental and Computational Validation of Hele-Shaw Stagnation Flow With Varying Shear Stress
,”
Comput. Mech.
,
52
(
6
), pp.
1463
1473
.10.1007/s00466-013-0887-y
110.
Loudon
,
C.
, and
Tordesillas
,
A.
,
1998
, “
The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow
,”
J. Theor. Biol.
,
191
(
1
), pp.
63
78
.10.1006/jtbi.1997.0564
111.
Hale
,
J. F.
,
McDonald
,
D. A.
, and
Womersley
,
J. R.
,
1955
, “
Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and the Reynolds Number
,”
J. Physiol.
,
128
(
3
), pp.
629
640
.10.1113/jphysiol.1955.sp005330
112.
Hsiai
,
T. K.
,
Cho
,
S. K.
,
Wong
,
P. K.
,
Ing
,
M.
,
Salazar
,
A.
,
Sevanian
,
A.
,
Navab
,
M.
,
Demer
,
L. L.
, and
Ho
,
C.-M.
,
2003
, “
Monocyte Recruitment to Endothelial Cells in Response to Oscillatory Shear Stress
,”
FASEB J.
,
17
(
12
), pp.
1648
1657
.10.1096/fj.02-1064com
113.
Davis
,
C. A.
,
Zambrano
,
S.
,
Anumolu
,
P.
,
Allen
,
A. C. B.
,
Sonoqui
,
L.
, and
Moreno
,
M. R.
,
2015
, “
Device-Based In Vitro Techniques for Mechanical Stimulation of Vascular Cells: A Review
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
040801
.10.1115/1.4029016
114.
Yakhot
,
A.
,
Arad
,
M.
, and
Ben-Dor
,
G.
,
1999
, “
Numerical Investigation of a Laminar Pulsating Flow in a Rectangular Duct
,”
Int. J. Numer. Methods Fluids
,
29
(
8
), pp.
935
950
.10.1002/(SICI)1097-0363(19990430)29:8<935::AID-FLD823>3.0.CO;2-C
115.
Hino
,
M.
,
Kashiwayanagi
,
M.
,
Nakayama
,
A.
, and
Hara
,
T.
,
1983
, “
Experiments on the Turbulence Statistics and the Structure of a Reciprocating Oscillatory Flow
,”
J. Fluid Mech.
,
131
(
1
), pp.
363
400
.10.1017/S0022112083001378
116.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
5
), pp.
1367
1384
.10.1063/1.1359766
117.
Ruel
,
J.
,
Lemay
,
J.
,
Dumas
,
G.
,
Doillon
,
C.
, and
Charara
,
J.
,
1995
, “
Development of a Parallel Plate Flow Chamber for Studying Cell Behavior Under Pulsatile Flow
,”
ASAIO J.
,
41
(
4
), pp.
876
883
.10.1097/00002480-199541040-00011
118.
Canty
,
J. M.
, and
Schwartz
,
J. S.
,
1994
, “
Nitric Oxide Mediates Flow-Dependent Epicardial Coronary Vasodilation to Changes in Pulse Frequency but Not Mean Flow in Conscious Dogs
,”
Circulation
,
89
(
1
), pp.
375
384
.10.1161/01.CIR.89.1.375
119.
Alastruey
,
J.
,
Passerini
,
T.
,
Formaggia
,
L.
, and
Peiró
,
J.
,
2012
, “
Physical Determining Factors of the Arterial Pulse Waveform: Theoretical Analysis and Calculation Using the 1-D Formulation
,”
J. Eng. Math.
,
77
(
1
), pp.
19
37
.10.1007/s10665-012-9555-z
120.
Zhang
,
Y.
,
Dong
,
Y.-H.
,
Liao
,
B.
,
Nie
,
Y.-M.
,
Wan
,
J.
,
Xiong
,
L.-L.
,
Fu
,
Y.
,
Xie
,
X.-J.
, and
Yu
,
F.-X.
,
2019
, “
Shear Stress Regulates ENOS Signaling in Human Umbilical Vein Endothelial Cells Via SRB1-PI3KAP1 Pathway
,”
Clin. Pract.
,
16
(
4
), pp.
1221
1230
.10.37532/fmcp.2019.16(4).1221-1230
121.
Chiu
,
J.-J.
,
Chen
,
L.-J.
,
Lee
,
P.-L.
,
Lee
,
C.-I.
,
Lo
,
L.-W.
,
Usami
,
S.
, and
Chien
,
S.
,
2003
, “
Shear Stress Inhibits Adhesion Molecule Expression in Vascular Endothelial Cells Induced by Coculture With Smooth Muscle Cells
,”
Blood
,
101
(
7
), pp.
2667
2674
.10.1182/blood-2002-08-2560
122.
Lee
,
W. H.
,
Kang
,
S.
,
Hirani
,
A. A.
, and
Lee
,
Y. W.
,
2007
, “
A Novel Double-Layer Parallel-Plate Flow Chamber
,”
IEEE 33rd Annual Northeast Bioengineering Conference
, Long Island, NY, Mar. 10–11, pp.
309
310
.10.1109/NEBC.2007.4413400
123.
Hoesli
,
C. A.
,
Tremblay
,
C.
,
Juneau
,
P.-M.
,
Boulanger
,
M. D.
,
Beland
,
A. V.
,
Ling
,
S. D.
,
Gaillet
,
B.
,
Duchesne
,
C.
,
Ruel
,
J.
,
Laroche
,
G.
, and
Garnier
,
A.
,
2018
, “
Dynamics of Endothelial Cell Responses to Laminar Shear Stress on Surfaces Functionalized With Fibronectin-Derived Peptides
,”
ACS Biomater. Sci. Eng.
,
4
(
11
), pp.
3779
3791
.10.1021/acsbiomaterials.8b00774
124.
McCann
,
J. A.
,
Peterson
,
S. D.
,
Plesniak
,
M. W.
,
Webster
,
T. J.
, and
Haberstroh
,
K. M.
,
2005
, “
Non-Uniform Flow Behavior in a Parallel Plate Flow Chamber Alters Endothelial Cell Responses
,”
Ann. Biomed. Eng.
,
33
(
3
), pp.
328
336
.10.1007/s10439-005-1735-9
125.
Leong
,
C. M.
,
Voorhees
,
A.
,
Nackman
,
G. B.
, and
Wei
,
T.
,
2013
, “
Flow Bioreactor Design for Quantitative Measurements Over Endothelial Cells Using Micro-Particle Image Velocimetry
,”
Rev. Sci. Instrum.
,
84
(
4
), p.
045109
.10.1063/1.4802681
126.
Avari
,
H.
,
Savory
,
E.
, and
Rogers
,
K. A.
,
2016
, “
An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells
,”
Cardiovasc. Eng. Technol.
,
7
(
1
), pp.
44
57
.10.1007/s13239-015-0250-x
127.
Xiao
,
L.
,
Wang
,
G.
,
Jiang
,
T.
,
Tang
,
C.
,
Wu
,
X.
, and
Sun
,
T.
,
2011
, “
Effects of Shear Stress on the Number and Function of Endothelial Progenitor Cells Adhered to Specific Matrices
,”
J. Appl. Biomater. Biomech.
,
9
(
3
), pp.
193
198
.10.5301/JABB.2011.6475
128.
Barber
,
K. M.
,
Pinero
,
A.
, and
Truskey
,
G. A.
,
1998
, “
Effects of Recirculating Flow on U-937 Cell Adhesion to Human Umbilical Vein Endothelial Cells
,”
Am. J. Physiol. Circ. Physiol.
,
275
(
2
), pp.
H591
H599
.10.1152/ajpheart.1998.275.2.H591
129.
Chen
,
C.-N.
,
Chang
,
S.-F.
,
Lee
,
P.-L.
,
Chang
,
K.
,
Chen
,
L.-J.
,
Usami
,
S.
,
Chien
,
S.
, and
Chiu
,
J.-J.
,
2006
, “
Neutrophils, Lymphocytes, and Monocytes Exhibit Diverse Behaviors in Transendothelial and Subendothelial Migrations Under Coculture With Smooth Muscle Cells in Disturbed Flow
,”
Blood
,
107
(
5
), pp.
1933
1942
.10.1182/blood-2005-08-3137
130.
DePaola
,
N.
,
Davies
,
P. F.
,
Pritchard
,
W. F.
,
Florez
,
L.
,
Harbeck
,
N.
, and
Polacek
,
D. C.
,
1999
, “
Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows In Vitro
,”
Proc. Natl. Acad. Sci.
,
96
(
6
), pp.
3154
3159
.10.1073/pnas.96.6.3154
131.
Truskey
,
G. A.
,
Barber
,
K. M.
,
Robey
,
T. C.
,
Olivier
,
L. A.
, and
Combs
,
M. P.
,
1995
, “
Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation
,”
ASME J. Biomech. Eng.
,
117
(
2
), pp.
203
210
.10.1115/1.2796002
132.
Tran-Son-Tay
,
R.
,
1993
, “
Techniques for Studying the Effects of Physical Forces on Mammalian Cells and Measuring Cell Mechanical Properties
,”
Physical Forces and the Mammalian Cell
,
J. A.
Frangos
, ed.,
Academic Press
,
San Diego, CA
, pp.
1
59
.
133.
Franzoni
,
M.
,
Cattaneo
,
I.
,
Longaretti
,
L.
,
Figliuzzi
,
M.
,
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2016
, “
Endothelial Cell Activation by Hemodynamic Shear Stress Derived From Arteriovenous Fistula for Hemodialysis Access
,”
Am. J. Physiol. Circ. Physiol.
,
310
(
1
), pp.
H49
H59
.10.1152/ajpheart.00098.2015
134.
Franzoni
,
M.
,
Cattaneo
,
I.
,
Ene-Iordache
,
B.
,
Oldani
,
A.
,
Righettini
,
P.
, and
Remuzzi
,
A.
,
2016
, “
Design of a Cone-and-Plate Device for Controlled Realistic Shear Stress Stimulation on Endothelial Cell Monolayers
,”
Cytotechnology
,
68
(
5
), pp.
1885
1896
.10.1007/s10616-015-9941-2
135.
Wang
,
L.
, and
Li
,
C.
,
2020
, “
A Brief Review of Pulp and Froth Rheology in Mineral Flotation
,”
J. Chem.
,
2020
, pp.
1
16
.10.1155/2020/3894542
136.
Remuzzi
,
A.
,
Dewey
,
C. F.
,
Davies
,
P. F.
, and
Gimbrone
,
M. A.
,
1984
, “
Orientation of Endothelial Cells in Shear Fields In Vitro
,”
Biorheology
,
21
(
4
), pp.
617
630
.10.3233/BIR-1984-21419
137.
Sdougos
,
H. P.
,
Bussolari
,
S. R.
, and
Dewey
,
C. F.
,
1984
, “
Secondary Flow and Turbulence in a Cone-and-Plate Device
,”
J. Fluid Mech.
,
138
, pp.
379
404
.10.1017/S0022112084000161
138.
Sucosky
,
P.
,
Padala
,
M.
,
Elhammali
,
A.
,
Balachandran
,
K.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
,
2008
, “
Design of an Ex Vivo Culture System to Investigate the Effects of Shear Stress on Cardiovascular Tissue
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
035001
.10.1115/1.2907753
139.
Malek
,
A. M.
,
Ahlquist
,
R.
,
Gibbons
,
G. H.
,
Dzau
,
V. J.
, and
Izumo
,
S.
,
1995
, “
A Cone-Plate Apparatus for the In Vitro Biochemical and Molecular Analysis of the Effect of Shear Stress on Adherent Cells
,”
Methods Cell Sci.
,
17
(
3
), pp.
165
176
.10.1007/BF00996123
140.
Buschmann
,
M. H.
,
Dieterich
,
P.
,
Adams
,
N. A.
, and
Schnittler
,
H.-J.
,
2005
, “
Analysis of Flow in a Cone-and-Plate Apparatus With Respect to Spatial and Temporal Effects on Endothelial Cells
,”
Biotechnol. Bioeng.
,
89
(
5
), pp.
493
502
.10.1002/bit.20165
141.
Ankeny
,
R. F.
,
Hinds
,
M. T.
, and
Nerem
,
R. M.
,
2013
, “
Dynamic Shear Stress Regulation of Inflammatory and Thrombotic Pathways in Baboon Endothelial Outgrowth Cells
,”
Tissue Eng. Part A
,
19
(
13–14
), pp.
1573
1582
.10.1089/ten.tea.2012.0300
142.
Cox
,
D. B.
,
1962
, “
Radial Flow in the Cone-Plate Viscometer
,”
Nature
,
193
(
4816
), pp.
670
670
.10.1038/193670a0
143.
Kohn
,
J. C.
,
Zhou
,
D. W.
,
Bordeleau
,
F.
,
Zhou
,
A. L.
,
Mason
,
B. N.
,
Mitchell
,
M. J.
,
King
,
M. R.
, and
Reinhart-King
,
C. A.
,
2015
, “
Cooperative Effects of Matrix Stiffness and Fluid Shear Stress on Endothelial Cell Behavior
,”
Biophys. J.
,
108
(
3
), pp.
471
478
.10.1016/j.bpj.2014.12.023
144.
Dreyer
,
L.
,
Krolitzki
,
B.
,
Autschbach
,
R.
,
Vogt
,
P.
,
Welte
,
T.
,
Ngezahayo
,
A.
, and
Glasmacher
,
B.
,
2011
, “
An Advanced Cone-and-Plate Reactor for the In Vitro-Application of Shear Stress on Adherent Cells
,”
Clin. Hemorheol. Microcirc.
,
49
(
1–4
), pp.
391
397
.10.3233/CH-2011-1488
145.
Kouzbari
,
K.
,
Hossan
,
M. R.
,
Arrizabalaga
,
J. H.
,
Varshney
,
R.
,
Simmons
,
A. D.
,
Gostynska
,
S.
,
Nollert
,
M. U.
, and
Ahamed
,
J.
,
2019
, “
Oscillatory Shear Potentiates Latent TGF-Β1 Activation More Than Steady Shear as Demonstrated by a Novel Force Generator
,”
Sci. Rep.
,
9
(
1
), p.
6065
.10.1038/s41598-019-42302-x
146.
Nagel
,
T.
,
Resnick
,
N.
,
Dewey
,
C. F.
, and
Gimbrone
,
M. A.
,
1999
, “
Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors
,”
Arterioscler. Thromb. Vasc. Biol.
,
19
(
8
), pp.
1825
1834
.10.1161/01.ATV.19.8.1825
147.
Maroski
,
J.
,
Vorderwülbecke
,
B. J.
,
Fiedorowicz
,
K.
,
Da Silva-Azevedo
,
L.
,
Siegel
,
G.
,
Marki
,
A.
,
Pries
,
A. R.
, and
Zakrzewicz
,
A.
,
2011
, “
Shear Stress Increases Endothelial Hyaluronan synthase 2 and Hyaluronan Synthesis Especially in Regard to an Atheroprotective Flow Profile
,”
Exp. Physiol.
,
96
(
9
), pp.
977
986
.10.1113/expphysiol.2010.056051
148.
Feugier
,
P.
,
Black
,
R. A.
,
Hunt
,
J. A.
, and
How
,
T. V.
,
2005
, “
Attachment, Morphology and Adherence of Human Endothelial Cells to Vascular Prosthesis Materials Under the Action of Shear Stress
,”
Biomaterials
,
26
(
13
), pp.
1457
1466
.10.1016/j.biomaterials.2004.04.050
149.
Kim
,
J.-S.
, and
Park
,
J.-Y.
,
2019
, “
Effects of Resveratrol on Laminar Shear Stress-Induced Mitochondrial Biogenesis in Human Vascular Endothelial Cells
,”
J. Exerc. Nutr. Biochem.
,
23
(
1
), pp.
7
12
.10.20463/jenb.2019.0002
150.
Morawietz
,
H.
,
Wagner
,
A. H.
,
Hecker
,
M.
, and
Goettsch
,
W.
,
2008
, “
Endothelin Receptor B-Mediated Induction of c-Jun and AP-1 in Response to Shear Stress in Human Endothelial Cells,” Can
,”
J. Physiol. Pharmacol.
,
86
(
8
), pp.
499
504
.10.1139/Y08-026
151.
Boo
,
Y. C.
,
Sorescu
,
G.
,
Boyd
,
N.
,
Shiojima
,
I.
,
Walsh
,
K.
,
Du
,
J.
, and
Jo
,
H.
,
2002
, “
Shear Stress Stimulates Phosphorylation of Endothelial Nitric-Oxide Synthase at Ser1179 by Akt-Independent Mechanisms: Role of Protein Kinase A
,”
J. Biol. Chem.
,
277
(
5
), pp.
3388
3396
.10.1074/jbc.M108789200
152.
Sorescu
,
G. P.
,
Sykes
,
M.
,
Weiss
,
D.
,
Platt
,
M. O.
,
Saha
,
A.
,
Hwang
,
J.
,
Boyd
,
N.
,
Boo
,
Y. C.
,
Vega
,
J. D.
,
Taylor
,
W. R.
, and
Jo
,
H.
,
2003
, “
Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response
,”
J. Biol. Chem.
,
278
(
33
), pp.
31128
31135
.10.1074/jbc.M300703200
153.
Blackman
,
B. R.
,
Barbee
,
K. A.
, and
Thibault
,
L. E.
,
2000
, “
In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment
,”
Ann. Biomed. Eng.
,
28
(
4
), pp.
363
372
.10.1114/1.286
154.
Blackman
,
B. R.
,
Garcı’A-Cardeña
,
G.
, and
Gimbrone
,
M. A.
,
2002
, “
A New In Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
ASME J. Biomech. Eng.
,
124
(
4
), pp.
397
407
.10.1115/1.1486468
155.
Davies
,
P. F.
,
Dewey
,
C. F.
,
Bussolari
,
S. R.
,
Gordon
,
E. J.
, and
Gimbrone
,
M. A.
,
1984
, “
Influence of Hemodynamic Forces on Vascular Endothelial Function. In Vitro Studies of Shear Stress and Pinocytosis in Bovine Aortic Cells
,”
J. Clin. Invest.
,
73
(
4
), pp.
1121
1129
.10.1172/JCI111298
156.
Malek
,
A.
, and
Izumo
,
S.
,
1992
, “
Physiological Fluid Shear Stress Causes Downregulation of Endothelin-1 MRNA in Bovine Aortic Endothelium
,”
Am. J. Physiol. Physiol.
,
263
(
2
), pp.
C389
C396
.10.1152/ajpcell.1992.263.2.C389
157.
Furukawa
,
K. S.
,
Ushida
,
T.
,
Noguchi
,
T.
,
Tamaki
,
T.
, and
Tateishi
,
T.
,
2003
, “
Development of Cone and Plate-Type Rheometer for Quantitative Analysis of Endothelial Cell Detachment by Shear Stress
,”
Int. J. Artif. Organs
,
26
(
5
), pp.
436
441
.10.1177/039139880302600510
158.
Kim
,
T. H.
,
Lee
,
J. M.
,
Ahrberg
,
C. D.
, and
Chung
,
B. G.
,
2018
, “
Development of the Microfluidic Device to Regulate Shear Stress Gradients
,”
BioChip J.
,
12
(
4
), pp.
294
303
.10.1007/s13206-018-2407-9
159.
Gilbert
,
R. J.
,
Park
,
H.
,
Rasponi
,
M.
,
Redaelli
,
A.
,
Gellman
,
B.
,
Dasse
,
K. A.
, and
Thorsen
,
T.
,
2007
, “
Computational and Functional Evaluation of a Microfluidic Blood Flow Device
,”
ASAIO J.
,
53
(
4
), pp.
447
455
.10.1097/MAT.0b013e3180a5e8ab
160.
Ponmozhi
,
J.
,
Moreira
,
J. M. R.
,
Mergulhão
,
F. J.
,
Campos
,
J. B. L. M.
, and
Miranda
,
J. M.
,
2019
, “
Fabrication and Hydrodynamic Characterization of a Microfluidic Device for Cell Adhesion Tests in Polymeric Surfaces
,”
Micromachines
,
10
(
5
), p.
303
.10.3390/mi10050303
161.
Jiang
,
L.
,
Li
,
S.
,
Zheng
,
J.
,
Li
,
Y.
, and
Huang
,
H.
,
2019
, “
Recent Progress in Microfluidic Models of the Blood-Brain Barrier
,”
Micromachines
,
10
(
6
), p.
375
.10.3390/mi10060375
162.
Sato
,
K.
, and
Sato
,
K.
,
2018
, “
Recent Progress in the Development of Microfluidic Vascular Models
,”
Anal. Sci.
,
34
(
7
), pp.
755
764
.10.2116/analsci.17R006
163.
Haase
,
K.
, and
Kamm
,
R. D.
,
2017
, “
Advances in on-Chip Vascularization
,”
Regen. Med.
,
12
(
3
), pp.
285
302
.10.2217/rme-2016-0152
164.
Ho
,
Y. T.
,
Adriani
,
G.
,
Beyer
,
S.
,
Nhan
,
P.-T.
,
Kamm
,
R. D.
, and
Kah
,
J. C. Y.
,
2017
, “
A Facile Method to Probe the Vascular Permeability of Nanoparticles in Nanomedicine Applications
,”
Sci. Rep.
,
7
(
1
), p.
707
.10.1038/s41598-017-00750-3
165.
Akbari
,
E.
,
Spychalski
,
G. B.
,
Rangharajan
,
K. K.
,
Prakash
,
S.
, and
Song
,
J. W.
,
2018
, “
Flow Dynamics Control Endothelial Permeability in a Microfluidic Vessel Bifurcation Model
,”
Lab Chip
,
18
(
7
), pp.
1084
1093
.10.1039/C8LC00130H
166.
Thomas
,
A.
,
Wang
,
S.
,
Sohrabi
,
S.
,
Orr
,
C.
,
He
,
R.
,
Shi
,
W.
, and
Liu
,
Y.
,
2017
, “
Characterization of Vascular Permeability Using a Biomimetic Microfluidic Blood Vessel Model
,”
Biomicrofluidics
,
11
(
2
), p.
024102
.10.1063/1.4977584
167.
Sonmez
,
U. M.
,
Cheng
,
Y.-W.
,
Watkins
,
S. C.
,
Roman
,
B. L.
, and
Davidson
,
L. A.
,
2020
, “
Endothelial Cell Polarization and Orientation to Flow in a Novel Microfluidic Multimodal Shear Stress Generator
,”
Lab Chip
,
20
(
23
), pp.
4373
4390
.10.1039/D0LC00738B
168.
Shemesh
,
J.
,
Jalilian
,
I.
,
Shi
,
A.
,
Heng Yeoh
,
G.
,
Knothe Tate
,
M. L.
, and
Ebrahimi Warkiani
,
M.
,
2015
, “
Flow-Induced Stress on Adherent Cells in Microfluidic Devices
,”
Lab Chip
,
15
(
21
), pp.
4114
4127
.10.1039/C5LC00633C
169.
Bertulli
,
C.
,
Gerigk
,
M.
,
Piano
,
N.
,
Liu
,
Y.
,
Zhang
,
D.
,
Müller
,
T.
,
Knowles
,
T. J.
, and
Huang
,
Y. Y. S.
,
2018
, “
Image-Assisted Microvessel-on-a-Chip Platform for Studying Cancer Cell Transendothelial Migration Dynamics
,”
Sci. Rep.
,
8
(
1
), p.
12480
.10.1038/s41598-018-30776-0
170.
Manz
,
X. D.
,
Albers
,
H. J.
,
Symersky
,
P.
,
Aman
,
J.
,
van der Meer
,
A. D.
,
Bogaard
,
H. J.
, and
Szulcek
,
R.
,
2020
, “
In Vitro Microfluidic Disease Model to Study Whole Blood-Endothelial Interactions and Blood Clot Dynamics in Real-Time
,”
J. Vis. Exp.
,
2020
(
159
), p. e61068.10.3791/61068
171.
DeStefano
,
J. G.
,
Xu
,
Z. S.
,
Williams
,
A. J.
,
Yimam
,
N.
, and
Searson
,
P. C.
,
2017
, “
Effect of Shear Stress on IPSC-Derived Human Brain Microvascular Endothelial Cells (DhBMECs)
,”
Fluids Barriers CNS
,
14
(
1
), p.
20
.10.1186/s12987-017-0068-z
172.
Beebe
,
D. J.
,
Mensing
,
G. A.
, and
Walker
,
G. M.
,
2002
, “
Physics and Applications of Microfluidics in Biology
,”
Annu. Rev. Biomed. Eng.
,
4
(
1
), pp.
261
286
.10.1146/annurev.bioeng.4.112601.125916
173.
Wu
,
J.
,
Day
,
D.
, and
Gu
,
M.
,
2010
, “
Shear Stress Mapping in Microfluidic Devices by Optical Tweezers
,”
Opt. Exp.
,
18
(
8
), pp.
7611
7616
.10.1364/OE.18.007611
174.
Polacheck
,
W. J.
,
Li
,
R.
,
Uzel
,
S. G. M.
, and
Kamm
,
R. D.
,
2013
, “
Microfluidic Platforms for Mechanobiology
,”
Lab Chip
,
13
(
12
), pp.
2252
2267
.10.1039/c3lc41393d
175.
Nahmias
,
Y.
, and
Bhatia
,
S.
,
2009
,
Microdevices in Biology and Medicine
,
Artech House
,
Norwood, MA
.
176.
Lu
,
H.
,
Koo
,
L. Y.
,
Wang
,
W. M.
,
Lauffenburger
,
D. A.
,
Griffith
,
L. G.
, and
Jensen
,
K. F.
,
2004
, “
Microfluidic Shear Devices for Quantitative Analysis of Cell Adhesion
,”
Anal. Chem.
,
76
(
18
), pp.
5257
5264
.10.1021/ac049837t
177.
Shah
,
R. K.
,
London
,
A. L.
, and
White
,
F. M.
,
1980
, “
Laminar Flow Forced Convection in Ducts
,”
ASME J. Fluids Eng.
,
102
(
2
), pp.
256
257
.10.1115/1.3240677
178.
Zheng
,
W.
,
Jiang
,
B.
,
Wang
,
D.
,
Zhang
,
W.
,
Wang
,
Z.
, and
Jiang
,
X.
,
2012
, “
A Microfluidic Flow-Stretch Chip for Investigating Blood Vessel Biomechanics
,”
Lab Chip
,
12
(
18
), pp.
3441
3450
.10.1039/c2lc40173h
179.
Young
,
E. W. K.
,
Wheeler
,
A. R.
, and
Simmons
,
C. A.
,
2007
, “
Matrix-Dependent Adhesion of Vascular and Valvular Endothelial Cells in Microfluidic Channels
,”
Lab Chip
,
7
(
12
), pp.
1759
1766
.10.1039/b712486d
180.
Godwin
,
L. A.
,
Deal
,
K. S.
,
Hoepfner
,
L. D.
,
Jackson
,
L. A.
, and
Easley
,
C. J.
,
2013
, “
Measurement of Microchannel Fluidic Resistance With a Standard Voltage Meter
,”
Anal. Chim. Acta
,
758
, pp.
101
107
.10.1016/j.aca.2012.10.043
181.
Yildiz-Ozturk
,
E.
, and
Yesil-Celiktas
,
O.
,
2015
, “
Diffusion Phenomena of Cells and Biomolecules in Microfluidic Devices
,”
Biomicrofluidics
,
9
(
5
), p.
052606
.10.1063/1.4923263
182.
Nguyen
,
N. T.
, and
Wereley
,
S.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Norwood, MA
.
183.
Sharp
,
K. V.
,
Adrian
,
R.
,
Santiago
,
J. G.
, and
Molho
,
J. I.
,
2005
, “
Liquid Flows in Microchannels
,”
MEMS: Introduction and Fundamentals
,
CRC Press
, Boca Raton, FL, pp.
1
46
.http://microfluidics.stanford.edu/Publications/ElectrokineticFlows/Sharp%20Microfluidics%20Chapter%2010%20in%20CRC%20MEMS%20Handbook.pdf
184.
Weibull
,
E.
,
Matsui
,
S.
,
Andersson Svahn
,
H.
, and
Ohashi
,
T.
,
2014
, “
A Microfluidic Device Towards Shear Stress Analysis of Clonal Expanded Endothelial Cells
,”
J. Biomech. Sci. Eng.
,
9
(
1
), pp.
JBSE0006
JBSE0006
.10.1299/jbse.2014jbse0006
185.
Glatzel
,
T.
,
Litterst
,
C.
,
Cupelli
,
C.
,
Lindemann
,
T.
,
Moosmann
,
C.
,
Niekrawietz
,
R.
,
Streule
,
W.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2008
, “
Computational Fluid Dynamics (CFD) Software Tools for Microfluidic Applications—A Case Study
,”
Comput. Fluids
,
37
(
3
), pp.
218
235
.10.1016/j.compfluid.2007.07.014
186.
Huang
,
M.
,
Fan
,
S.
,
Xing
,
W.
, and
Liu
,
C.
,
2010
, “
Microfluidic Cell Culture System Studies and Computational Fluid Dynamics
,”
Math. Comput. Model.
,
52
(
11–12
), pp.
2036
2042
.10.1016/j.mcm.2010.01.024
187.
Zhou
,
J.
,
Ellis
,
A. V.
, and
Voelcker
,
N. H.
,
2010
, “
Recent Developments in PDMS Surface Modification for Microfluidic Devices
,”
Electrophoresis
,
31
(
1
), pp.
2
16
.10.1002/elps.200900475
188.
Huang
,
T. T.
,
Mosier
,
N. S.
, and
Ladisch
,
M. R.
,
2006
, “
Surface Engineering of Microchannel Walls for Protein Separation and Directed Microfluidic Flow
,”
J. Sep. Sci.
,
29
(
12
), pp.
1733
1742
.10.1002/jssc.200600150
189.
Funamoto
,
K.
,
Zervantonakis
,
I. K.
,
Liu
,
Y.
,
Ochs
,
C. J.
,
Kim
,
C.
, and
Kamm
,
R. D.
,
2012
, “
A Novel Microfluidic Platform for High-Resolution Imaging of a Three-Dimensional Cell Culture Under a Controlled Hypoxic Environment
,”
Lab Chip
,
12
(
22
), p.
4855
.10.1039/c2lc40306d
190.
Nguyen
,
D.-H. T.
,
Stapleton
,
S. C.
,
Yang
,
M. T.
,
Cha
,
S. S.
,
Choi
,
C. K.
,
Galie
,
P. A.
, and
Chen
,
C. S.
,
2013
, “
Biomimetic Model to Reconstitute Angiogenic Sprouting Morphogenesis In Vitro
,”
Proc. Natl. Acad. Sci.
,
110
(
17
), pp.
6712
6717
.10.1073/pnas.1221526110
191.
Moya
,
M. L.
,
Alonzo
,
L. F.
, and
George
,
S. C.
,
2014
, “
Microfluidic Device to Culture 3D In Vitro Human Capillary Networks
,”
Methods Mol. Biol.
,
1202
, pp.
21
27
.10.1007/7651_2013_36
192.
Zilberman-Rudenko
,
J.
,
Sylman
,
J. L.
,
Garland
,
K. S.
,
Puy
,
C.
,
Wong
,
A. D.
,
Searson
,
P. C.
, and
McCarty
,
O. J. T.
,
2017
, “
Utility of Microfluidic Devices to Study the Platelet–Endothelium Interface
,”
Platelets
,
28
(
5
), pp.
449
456
.10.1080/09537104.2017.1280600
193.
Xia
,
Y.
,
Si
,
J.
, and
Li
,
Z.
,
2016
, “
Fabrication Techniques for Microfluidic Paper-Based Analytical Devices and Their Applications for Biological Testing: A Review
,”
Biosens. Bioelectron.
,
77
, pp.
774
789
.10.1016/j.bios.2015.10.032
194.
Faustino
,
V.
,
Catarino
,
S. O.
,
Lima
,
R.
, and
Minas
,
G.
,
2016
, “
Biomedical Microfluidic Devices by Using Low-Cost Fabrication Techniques: A Review
,”
J. Biomech.
,
49
(
11
), pp.
2280
2292
.10.1016/j.jbiomech.2015.11.031
195.
Kharati-Koopaee
,
M.
, and
Rezaee
,
M.
,
2017
, “
Investigation of Turbulent Flow Through Microchannels Consisting of Different Micropost Arrangements
,”
Eng. Comput.
,
34
(
5
), pp.
1367
1392
.10.1108/EC-02-2016-0069
196.
Young
,
E. W. K.
, and
Beebe
,
D. J.
,
2010
, “
Fundamentals of Microfluidic Cell Culture in Controlled Microenvironments
,”
Chem. Soc. Rev.
,
39
(
3
), pp.
1036
1048
.10.1039/b909900j
197.
Wu
,
J.
, and
Gu
,
M.
,
2011
, “
Microfluidic Sensing: State of the Art Fabrication and Detection Techniques
,”
J. Biomed. Opt.
,
16
(
8
), p.
080901
.10.1117/1.3607430
198.
Shih
,
H.-C.
,
Lee
,
T.-A.
,
Wu
,
H.-M.
,
Ko
,
P.-L.
,
Liao
,
W.-H.
, and
Tung
,
Y.-C.
,
2019
, “
Microfluidic Collective Cell Migration Assay for Study of Endothelial Cell Proliferation and Migration Under Combinations of Oxygen Gradients, Tensions, and Drug Treatments
,”
Sci. Rep.
,
9
(
1
), p.
8234
.10.1038/s41598-019-44594-5
199.
Jeong
,
G. S.
,
Oh
,
J.
,
Kim
,
S. B.
,
Dokmeci
,
M. R.
,
Bae
,
H.
,
Lee
,
S.-H.
, and
Khademhosseini
,
A.
,
2014
, “
Siphon-Driven Microfluidic Passive Pump With a Yarn Flow Resistance Controller
,”
Lab Chip
,
14
(
21
), pp.
4213
4219
.10.1039/C4LC00510D
200.
Erickson
,
B. E.
,
2005
, “
Braille Pins Control Microfluidic Flow
,”
Anal. Chem.
,
77
(
5
), p.
93
.10.1021/ac053348r
201.
Myers
,
D. R.
,
Sakurai
,
Y.
,
Tran
,
R.
,
Ahn
,
B.
,
Hardy
,
E. T.
,
Mannino
,
R.
,
Kita
,
A.
,
Tsai
,
M.
, and
Lam
,
W. A.
,
2012
, “
Endothelialized Microfluidics for Studying Microvascular Interactions in Hematologic Diseases
,”
J. Vis. Exp.
,
64
, p.
3958
.10.3791/3958
202.
Varma
,
S.
, and
Voldman
,
J.
,
2015
, “
A Cell-Based Sensor of Fluid Shear Stress for Microfluidics
,”
Lab Chip
,
15
(
6
), pp.
1563
1573
.10.1039/C4LC01369G
203.
Mohammed
,
M.
,
Thurgood
,
P.
,
Gilliam
,
C.
,
Nguyen
,
N.
,
Pirogova
,
E.
,
Peter
,
K.
,
Khoshmanesh
,
K.
, and
Baratchi
,
S.
,
2019
, “
Studying the Response of Aortic Endothelial Cells Under Pulsatile Flow Using a Compact Microfluidic System
,”
Anal. Chem.
,
91
(
18
), pp.
12077
12084
..10.1021/acs.analchem.9b03247
204.
Byun
,
C. K.
,
Abi-Samra
,
K.
,
Cho
,
Y.-K.
, and
Takayama
,
S.
,
2014
, “
Pumps for Microfluidic Cell Culture
,”
Electrophoresis
,
35
(
2–3
), pp.
245
257
.10.1002/elps.201300205
205.
Hossan
,
M. R.
,
Dutta
,
D.
,
Islam
,
N.
, and
Dutta
,
P.
,
2018
, “
Review: Electric Field Driven Pumping in Microfluidic Device
,”
Electrophoresis
,
39
(
5–6
), pp.
702
731
.10.1002/elps.201700375
206.
Zhu
,
P.
, and
Wang
,
L.
,
2017
, “
Passive and Active Droplet Generation With Microfluidics: A Review
,”
Lab Chip
,
17
(
1
), pp.
34
75
.10.1039/C6LC01018K
207.
Clime
,
L.
,
Daoud
,
J.
,
Brassard
,
D.
,
Malic
,
L.
,
Geissler
,
M.
, and
Veres
,
T.
,
2019
, “
Active Pumping and Control of Flows in Centrifugal Microfluidics
,”
Microfluid. Nanofluid.
,
23
(
3
), p.
29
.10.1007/s10404-019-2198-x
208.
Laser
,
D. J.
, and
Santiago
,
J. G.
,
2004
, “
A Review of Micropumps
,”
J. Micromech. Microeng.
,
14
(
6
), pp.
R35
R64
.10.1088/0960-1317/14/6/R01
209.
Lee
,
D. W.
,
Choi
,
N.
, and
Sung
,
J. H.
,
2019
, “
A Microfluidic Chip With Gravity-Induced Unidirectional Flow for Perfusion Cell Culture
,”
Biotechnol. Prog.
,
35
(
1
), p.
e2701
.10.1002/btpr.2701
210.
Yang
,
Y.
,
Fathi
,
P.
,
Holland
,
G.
,
Pan
,
D.
,
Wang
,
N. S.
, and
Esch
,
M. B.
,
2019
, “
Pumpless Microfluidic Devices for Generating Healthy and Diseased Endothelia
,”
Lab Chip
,
19
(
19
), pp.
3212
3219
.10.1039/C9LC00446G
211.
Volpatti
,
L. R.
, and
Yetisen
,
A. K.
,
2014
, “
Commercialization of Microfluidic Devices
,”
Trends Biotechnol.
,
32
(
7
), pp.
347
350
.10.1016/j.tibtech.2014.04.010
212.
Soenksen
,
L. R.
,
Kassis
,
T.
,
Noh
,
M.
,
Griffith
,
L. G.
, and
Trumper
,
D. L.
,
2018
, “
Closed-Loop Feedback Control for Microfluidic Systems Through Automated Capacitive Fluid Height Sensing
,”
Lab Chip
,
18
(
6
), pp.
902
914
.10.1039/C7LC01223C
213.
Borgdorff
,
P.
, and
Tangelder
,
G. J.
,
2006
, “
Pump-Induced Platelet Aggregation With Subsequent Hypotension: Its Mechanism and Prevention With Clopidogrel
,”
J. Thorac. Cardiovasc. Surg.
,
131
(
4
), pp.
813
821.
10.1016/j.jtcvs.2005.10.021
214.
Kurth
,
F.
,
Györvary
,
E.
,
Heub
,
S.
,
Ledroit
,
D.
,
Paoletti
,
S.
,
Renggli
,
K.
,
Revol
,
V.
,
Verhulsel
,
M.
,
Weder
,
G.
, and
Loizeau
,
F.
,
2020
, “
Organs-on-a-Chip Engineering
,”
Organ-on-a-Chip
,
J.
Hoeng
,
D.
Bovard
, and
M. C.
Peitsch
, eds.,
Academic Press
, San Diego, CA, pp.
47
130
.
215.
Hsiai
,
T. K.
,
Cho
,
S. K.
,
Honda
,
H. M.
,
Hama
,
S.
,
Navab
,
M.
,
Demer
,
L. L.
, and
Ho
,
C.-M.
,
2002
, “
Endothelial Cell Dynamics Under Pulsating Flows: Significance of High Versus Low Shear Stress Slew Rates
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
646
656
.10.1114/1.1484222
216.
Li
,
M.
,
Scott
,
D. E.
,
Shandas
,
R.
,
Stenmark
,
K. R.
, and
Tan
,
W.
,
2009
, “
High Pulsatility Flow Induces Adhesion Molecule and Cytokine MRNA Expression in Distal Pulmonary Artery Endothelial Cells
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1082
1092
.10.1007/s10439-009-9684-3
217.
Li
,
M.
,
Tan
,
Y.
,
Stenmark
,
K. R.
, and
Tan
,
W.
,
2013
, “
High Pulsatility Flow Induces Acute Endothelial Inflammation Through Overpolarizing Cells to Activate NF-ΚB
,”
Cardiovasc. Eng. Technol.
,
4
(
1
), pp.
26
38
.10.1007/s13239-012-0115-5
218.
Wei
,
H.
,
Cheng
,
A. L.
, and
Pahlevan
,
N. M.
,
2020
, “
On the Significance of Blood Flow Shear-Rate-Dependency in Modeling of Fontan Hemodynamics
,”
Eur. J. Mech. B/Fluids
,
84
, pp.
1
14
.10.1016/j.euromechflu.2020.05.011
219.
Cheng
,
A. L.
,
Pahlevan
,
N. M.
,
Rinderknecht
,
D. G.
,
Wood
,
J. C.
, and
Gharib
,
M.
,
2018
, “
Experimental Investigation of the Effect of Non-Newtonian Behavior of Blood Flow in the Fontan Circulation
,”
Eur. J. Mech. B/Fluids
,
68
, pp.
184
192
.10.1016/j.euromechflu.2017.12.009
You do not currently have access to this content.