Abstract

Growth of skin in response to stretch is the basis for tissue expansion (TE), a procedure to gain new skin area for reconstruction of large defects. Unfortunately, complications and suboptimal outcomes persist because TE is planned and executed based on physician's experience and trial and error instead of predictive quantitative tools. Recently, we calibrated computational models of TE to a porcine animal model of tissue expansion, showing that skin growth is proportional to stretch with a characteristic time constant. Here, we use our calibrated model to predict skin growth in cases of pediatric reconstruction. Available from the clinical setting are the expander shapes and inflation protocols. We create low fidelity semi-analytical models and finite element models for each of the clinical cases. To account for uncertainty in the response expected from translating the models from the animal experiments to the pediatric population, we create multifidelity Gaussian process surrogates to propagate uncertainty in the mechanical properties and the biological response. Predictions with uncertainty for the clinical setting are essential to bridge our knowledge from the large animal experiments to guide and improve the treatment of pediatric patients. Future calibration of the model with patient-specific data—such as estimation of mechanical properties and area growth in the operating room—will change the standard for planning and execution of TE protocols.

References

1.
Neumann
,
C. G.
,
1957
, “
The Expansion of an Area of Skin by Progressive Distention of a Subcutaneous Balloon: Use of the Method for Securing Skin for Subtotal Reconstruction of the Ear
,”
Plast. Reconstr. Surg.
,
19
(
2
), pp.
124
130
.10.1097/00006534-195702000-00004
2.
Rivera
,
R.
,
LoGiudice
,
J.
, and
Gosain
,
A. K.
,
2005
, “
Tissue Expansion in Pediatric Patients
,”
Clin. Plast. Surg.
,
32
(
1
), pp.
35
44
.10.1016/j.cps.2004.08.001
3.
Silver
,
F. H.
,
Siperko
,
L. M.
, and
Seehra
,
G. P.
,
2003
, “
Mechanobiology of Force Transduction in Dermal Tissue
,”
Skin Res. Technol.
,
9
(
1
), pp.
3
23
.10.1034/j.1600-0846.2003.00358.x
4.
Zöllner
,
A. M.
,
Tepole
,
A. B.
, and
Kuhl
,
E.
,
2012
, “
On the Biomechanics and Mechanobiology of Growing Skin
,”
J. Theor. Biol.
,
297
, pp.
166
175
.10.1016/j.jtbi.2011.12.022
5.
Manders
,
E. K.
,
Schenden
,
M. J.
,
Furrey
,
J. A.
,
Hetzler
,
P. T.
,
Davis
,
T. S.
, and
Graham
,
W. P. I.
,
1984
, “
Soft-Tissue Expansion: Concepts and Complications
,”
Plast. Reconstr. Surg.
,
74
(
4
), pp.
493
507
.10.1097/00006534-198410000-00007
6.
Leedy
,
J. E.
,
Janis
,
J. E.
, and
Rohrich
,
R. J.
,
2005
, “
Reconstruction of Acquired Scalp Defects: An Algorithmic Approach
,”
Plast. Reconstr. Surgery
,
116
(
4
), pp.
54e
72e
.10.1097/01.prs.0000179188.25019.6c
7.
LoGiudice
,
J.
, and
Gosain
,
A. K.
,
2004
, “
Pediatric Tissue Expansion: Indications and Complications
,”
Plast. Surg. Nurs.
,
24
(
1
), pp.
20
26
.10.1097/00006527-200401000-00007
8.
Fochtmann
,
A.
,
Keck
,
M.
,
Mittlböck
,
M.
, and
Rath
,
T.
,
2013
, “
Tissue Expansion for Correction of Scars Due to Burn and Other Causes: A Retrospective Comparative Study of Various Complications
,”
Burns
,
39
(
5
), pp.
984
989
.10.1016/j.burns.2012.10.020
9.
Lee
,
T.
,
Vaca
,
E. E.
,
Ledwon
,
J. K.
,
Bae
,
H.
,
Topczewska
,
J. M.
,
Turin
,
S. Y.
,
Kuhl
,
E.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2018
, “
Improving Tissue Expansion Protocols Through Computational Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
82
, pp.
224
234
.10.1016/j.jmbbm.2018.03.034
10.
Gottlieb
,
L.
,
Parsons
,
R.
, and
Krizek
,
T.
,
1986
, “
The Use of Tissue Expansion Techniques in Burn Reconstruction
,”
J. Burn Care Rehabil.
,
7
(
3
), pp.
234
237
.10.1097/00004630-198605000-00007
11.
Purnell
,
C. A.
,
Gart
,
M. S.
,
Buganza-Tepole
,
A.
,
Tomaszewski
,
J. P.
,
Topczewska
,
J. M.
,
Kuhl
,
E.
, and
Gosain
,
A. K.
,
2018
, “
Determining the Differential Effects of Stretch and Growth in Tissue-Expanded Skin: Combining Isogeometric Analysis and Continuum Mechanics in a Porcine Model
,”
Dermatol. Surg.
,
44
(
1
), pp.
48
52
.10.1097/DSS.0000000000001228
12.
Ambrosi
,
D.
,
Ateshian
,
G.
,
Arruda
,
E.
,
Cowin
,
S.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G.
, et al.,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
13.
Eskandari
,
M.
, and
Kuhl
,
E.
,
2015
, “
Systems Biology and Mechanics of Growth
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
,
7
(
6
), pp.
401
412
.10.1002/wsbm.1312
14.
Lubarda
,
V. A.
,
2004
, “
Constitutive Theories Based on the Multiplicative Decomposition of Deformation Gradient: Thermoelasticity, Elastoplasticity, and Biomechanics
,”
ASME Appl. Mech. Rev.
,
57
(
2
), pp.
95
108
.10.1115/1.1591000
15.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
16.
Taber
,
L. A.
, and
Eggers
,
D. W.
,
1996
, “
Theoretical Study of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
,
180
(
4
), pp.
343
357
.10.1006/jtbi.1996.0107
17.
Tepole
,
A. B.
,
Gart
,
M.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2014
, “
Characterization of Living Skin Using Multi-View Stereo and Isogeometric Analysis
,”
Acta Biomater.
,
10
(
11
), pp.
4822
4831
.10.1016/j.actbio.2014.06.037
18.
Aragona
,
M.
,
Sifrim
,
A.
,
Malfait
,
M.
,
Song
,
Y.
,
Van Herck
,
J.
,
Dekoninck
,
S.
,
Gargouri
,
S.
, et al.,
2020
, “
Mechanisms of Stretch-Mediated Skin Expansion at Single-Cell Resolution
,”
Nature
,
584
(
7820
), pp.
268
273
.10.1038/s41586-020-2555-7
19.
Han
,
T.
,
Lee
,
T.
,
Ledwon
,
J.
,
Vaca
,
E.
,
Turin
,
S.
,
Kearney
,
A.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2022
, “
Bayesian Calibration of a Computational Model of Tissue Expansion Based on a Porcine Animal Model
,”
Acta Biomater.
,
137
, pp.
136
146
.10.1016/j.actbio.2021.10.007
20.
Meyer
,
W.
,
Schwarz
,
R.
, and
Neurand
,
K.
,
1978
, “
The Skin of Domestic Mammals as a Model for the Human Skin, With Special Reference to the Domestic pig
,”
Skin-Drug Application and Evaluation of Environmental Hazards
, Vol.
7
,
Current Problems in Dermatology
, pp.
39
52
.
21.
Lee
,
T.
,
Turin
,
S. Y.
,
Gosain
,
A. K.
,
Bilionis
,
I.
, and
Buganza Tepole
,
A.
,
2018
, “
Propagation of Material Behavior Uncertainty in a Nonlinear Finite Element Model of Reconstructive Surgery
,”
Biomech. Model. Mechanobiol.
,
17
(
6
), pp.
1857
1873
.10.1007/s10237-018-1061-4
22.
Tripathy
,
R. K.
, and
Bilionis
,
I.
,
2018
, “
Deep uq: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty Quantification
,”
J. Comput. Phys.
,
375
, pp.
565
588
.10.1016/j.jcp.2018.08.036
23.
Lee
,
T.
,
Bilionis
,
I.
, and
Tepole
,
A. B.
,
2020
, “
Propagation of Uncertainty in the Mechanical and Biological Response of Growing Tissues Using Multi-Fidelity Gaussian Process Regression
,”
Comput. Methods Appl. Mech. Eng.
,
359
, p.
112724
.10.1016/j.cma.2019.112724
24.
Srivastava
,
A.
,
Tepole
,
A. B.
, and
Hui
,
C.-Y.
,
2016
, “
Skin Stretching by a Balloon Tissue Expander: Interplay Between Contact Mechanics and Skin Growth
,”
Extreme Mech. Lett.
,
9
, pp.
175
187
.10.1016/j.eml.2016.06.008
25.
Tepole
,
A. B.
,
Ploch
,
C. J.
,
Wong
,
J.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2011
, “
Growing Skin: A Computational Model for Skin Expansion in Reconstructive Surgery
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2177
2190
.10.1016/j.jmps.2011.05.004
26.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.10.1093/biomet/87.1.1
27.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer, New York
.
28.
Le Gratiet
,
L.
, and
Garnier
,
J.
,
2014
, “
Recursive co-Kriging Model for Design of Computer Experiments With Multiple Levels of Fidelity
,”
Int. J. Uncertainty Quantif.
,
4
(
5
), pp.
365
386
.10.1615/Int.J.UncertaintyQuantification.2014006914
29.
Perdikaris
,
P.
,
Raissi
,
M.
,
Damianou
,
A.
,
Lawrence
,
N.
, and
Karniadakis
,
G. E.
,
2017
, “
Nonlinear Information Fusion Algorithms for Data-Efficient Multi-Fidelity Modelling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2198
), p.
20160751
.10.1098/rspa.2016.0751
30.
GPy,
2012
, “
GPy: A Gaussian Process Framework in Python
,” GitHub, accessed Aug. 31, 2012, http://github.com/SheffieldML/GPy
31.
Krueger
,
N.
,
Luebberding
,
S.
,
Oltmer
,
M.
,
Streker
,
M.
, and
Kerscher
,
M.
,
2011
, “
Age-Related Changes in Skin Mechanical Properties: A Quantitative Evaluation of 120 Female Subjects
,”
Skin Res. Technol.
,
17
(
2
), pp.
141
148
.10.1111/j.1600-0846.2010.00486.x
32.
Luebberding
,
S.
,
Krueger
,
N.
, and
Kerscher
,
M.
,
2014
, “
Mechanical Properties of Human Skin In Vivo: A Comparative Evaluation in 300 Men and Women
,”
Skin Res. Technol.
,
20
(
2
), pp.
127
135
.10.1111/srt.12094
33.
Janes
,
L. E.
,
Ledwon
,
J. K.
,
Vaca
,
E. E.
,
Turin
,
S. Y.
,
Lee
,
T.
,
Tepole
,
A. B.
,
Bae
,
H.
, and
Gosain
,
A. K.
,
2020
, “
Modeling Tissue Expansion With Isogeometric Analysis: Skin Growth and Tissue Level Changes in the Porcine Model
,”
Plast. Reconstr. Surg.
,
146
(
4
), pp.
792
798
.10.1097/PRS.0000000000007153
34.
Gosain
,
A. K.
,
Turin
,
S. Y.
,
Chim
,
H.
, and
LoGiudice
,
J. A.
,
2018
, “
Salvaging the Unavoidable: A Review of Complications in Pediatric Tissue Expansion
,”
Plast. Reconstr. Surg.
,
142
(
3
), pp.
759
768
.10.1097/PRS.0000000000004650
35.
Ruiz
,
Y. G.
, and
Gutiérrez
,
J. C. L.
,
2017
, “
Multiple Tissue Expansion for Giant Congenital Melanocytic Nevus
,”
Ann. Plast. Surg.
,
79
(
6
), pp.
e37
e40
.10.1097/SAP.0000000000001215
36.
Adler
,
N.
,
Elia
,
J.
,
Billig
,
A.
, and
Margulis
,
A.
,
2015
, “
Complications of Nonbreast Tissue Expansion: 9 Years Experience With 44 Adult Patients and 119 Pediatric Patients
,”
J. Pediatr. Surg.
,
50
(
9
), pp.
1513
1516
.10.1016/j.jpedsurg.2015.03.055
37.
Huang
,
X.
,
Qu
,
X.
, and
Li
,
Q.
,
2011
, “
Risk Factors for Complications of Tissue Expansion: A 20-Year Systematic Review and Meta-Analysis
,”
Plast. Reconstr. Surg.
,
128
(
3
), pp.
787
797
.10.1097/PRS.0b013e3182221372
38.
Pamplona
,
D. C.
,
Velloso
,
R. Q.
, and
Radwanski
,
H. N.
,
2014
, “
On Skin Expansion
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
655
662
.10.1016/j.jmbbm.2013.03.023
39.
Sanders
,
J. E.
,
Goldstein
,
B. S.
, and
Leotta
,
D. F.
,
1995
, “
Skin Response to Mechanical Stress: Adaptation Rather Than Breakdown-a Review of the Literature
,”
J. Rehabil. Res. Dev.
,
32
(
3
), pp.
214
214
.https://pubmed.ncbi.nlm.nih.gov/8592293/
40.
Belkoff
,
S. M.
,
Naylor
,
E. C.
,
Walshaw
,
R.
,
Lanigan
,
E.
,
Colony
,
L.
, and
Haut
,
R. C.
,
1995
, “
Effects of Subcutaneous Expansion on the Mechanical Properties of Porcine Skin
,”
J. Surg. Res.
,
58
(
2
), pp.
117
123
.10.1006/jsre.1995.1019
41.
Johnson
,
T. M.
,
Lowe
,
L.
,
Brown
,
M. D.
,
Sullivan
,
M. J.
, and
Nelson
,
B. R.
,
1993
, “
Histology and Physiology of Tissue Expansion
,”
J. Dermatol. Surg. Oncology
,
19
(
12
), pp.
1074
1078
.10.1111/j.1524-4725.1993.tb01002.x
42.
Lejeune
,
E.
,
2020
, “
Mechanical Mnist: A Benchmark Dataset for Mechanical Metamodels
,”
Extreme Mech. Lett.
,
36
, p.
100659
.10.1016/j.eml.2020.100659
43.
Zhang
,
W.
,
Li
,
D. S.
,
Bui-Thanh
,
T.
, and
Sacks
,
M. S.
,
2022
, “
Simulation of the 3d Hyperelastic Behavior of Ventricular Myocardium Using a Finite-Element Based Neural-Network Approach
,”
Comput. Methods Appl. Mech. Eng.
,
394
, p.
114871
.10.1016/j.cma.2022.114871
44.
Wang
,
Z.
,
Estrada
,
J. B.
,
Arruda
,
E. M.
, and
Garikipati
,
K.
,
2021
, “
Inference of Deformation Mechanisms and Constitutive Response of Soft Material Surrogates of Biological Tissue by Full-Field Characterization and Data-Driven Variational System Identification
,”
J. Mech. Phys. Solids
,
153
, p.
104474
.10.1016/j.jmps.2021.104474
45.
Zhang
,
X.
, and
Garikipati
,
K.
,
2021
, “
Bayesian Neural Networks for Weak Solution of Pdes With Uncertainty Quantification
,” preprint arXiv:2101.04879.
46.
Lee
,
T.
,
Turin
,
S. Y.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2018
, “
Multi-View Stereo in the Operating Room Allows Prediction of Healing Complications in a Patient-Specific Model of Reconstructive Surgery
,”
J. Biomech.
,
74
, pp.
202
206
.10.1016/j.jbiomech.2018.04.004
47.
Annaidh
,
A. N.
,
Bruyère
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Otténio
,
M.
,
2012
, “
Characterization of the Anisotropic Mechanical Properties of Excised Human Skin
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
139
148
.10.1016/j.jmbbm.2011.08.016
48.
Wahlsten
,
A.
,
Pensalfini
,
M.
,
Stracuzzi
,
A.
,
Restivo
,
G.
,
Hopf
,
R.
, and
Mazza
,
E.
,
2019
, “
On the Compressibility and Poroelasticity of Human and Murine Skin
,”
Biomech. Model. Mechanobiol.
,
18
(
4
), pp.
1079
1093
.10.1007/s10237-019-01129-1
49.
Laiacona
,
D.
,
Cohen
,
J.
,
Coulon
,
K.
,
Lipsky
,
Z. W.
,
Maiorana
,
C.
,
Boltyanskiy
,
R.
,
Dufresne
,
E. R.
, and
German
,
G. K.
,
2019
, “
Non-Invasive In Vivo Quantification of Human Skin Tension Lines
,”
Acta Biomater.
,
88
, pp.
141
148
.10.1016/j.actbio.2019.02.003
You do not currently have access to this content.