Abstract

One of the intrinsic features of skin and other biological tissues is the high variation in the mechanical properties across individuals and different demographics. Mechanical characterization of skin is still a challenge because the need for subject-specific in vivo parameters prevents us from utilizing traditional methods, e.g., uniaxial tensile test. Suction devices have been suggested as the best candidate to acquire mechanical properties of skin noninvasively, but capturing anisotropic properties using a circular probe opening—which is the conventional suction device—is not possible. On the other hand, noncircular probe openings can drive different deformations with respect to fiber orientation and therefore could be used to characterize the anisotropic mechanics of skin noninvasively. We propose the use of elliptical probe openings and a methodology to solve the inverse problem of finding mechanical properties from suction measurements. The proposed probe is tested virtually by solving the forward problem of skin deformation by a finite element (FE) model. The forward problem is a function of the material parameters. In order to solve the inverse problem of determining skin properties from suction data, we use a Bayesian framework. The FE model is an expensive forward function, and is thus substituted with a Gaussian process metamodel to enable the Bayesian inference problem.

References

1.
McGrath
,
J. A.
, and
Uitto
,
J.
,
2010
, “
Anatomy and Organization of Human Skin
,”
Rook's Textbook of Dermatology
, 8th ed., Vol.
1
,
Wiley-Blackwell
, Hoboken, NJ, pp.
34
86
.
2.
Jor
,
J. W. Y.
,
Nash
,
M. P.
,
Nielsen
,
P. M. F.
, and
Hunter
,
P. J.
,
2011
, “
Estimating Material Parameters of a Structurally Based Constitutive Relation for Skin Mechanics
,”
Biomech. Model. Mechanobiol.
,
10
(
5
), pp.
767
778
.10.1007/s10237-010-0272-0
3.
Wong
,
V. W.
,
Paterno
,
J.
,
Sorkin
,
M.
,
Glotzbach
,
J. P.
,
Levi
,
K.
,
Januszyk
,
M.
,
Rustad
,
K. C.
,
Longaker
,
M. T.
, and
Gurtner
,
G. C.
,
2011
, “
Mechanical Force Prolongs Acute Inflammation Via t-Cell-Dependent Pathways During Scar Formation
,”
FASEB J.
,
25
(
12
), pp.
4498
4510
.10.1096/fj.10-178087
4.
Wong
,
V. W.
,
Rustad
,
K. C.
,
Akaishi
,
S.
,
Sorkin
,
M.
,
Glotzbach
,
J. P.
,
Januszyk
,
M.
,
Nelson
,
E. R.
,
Levi
,
K.
,
Paterno
,
J.
,
Vial
,
IN.
,
Kuang
,
A. A.
,
Longaker
,
M. T.
, and
Gurtner
,
G. C.
,
2012
, “
Focal Adhesion Kinase Links Mechanical Force to Skin Fibrosis Via Inflammatory Signaling
,”
Nat. Med.
,
18
(
1
), pp.
148
152
.10.1038/nm.2574
5.
Rustad
,
K. C.
,
Wong
,
V. W.
, and
Gurtner
,
G. C.
,
2013
, “
The Role of Focal Adhesion Complexes in Fibroblast Mechanotransduction During Scar Formation
,”
Differentiation
,
86
(
3
), pp.
87
91
.10.1016/j.diff.2013.02.003
6.
Lee
,
T.
,
Turin
,
S. Y.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2018
, “
Multi-View Stereo in the Operating Room Allows Prediction of Healing Complications in a Patient-Specific Model of Reconstructive Surgery
,”
J. Biomech.
,
74
, pp.
202
206
.10.1016/j.jbiomech.2018.04.004
7.
Ben’ıtez
,
J. M.
, and
Montáns
,
F. J.
,
2017
, “
The Mechanical Behavior of Skin: Structures and Models for the Finite Element Analysis
,”
Comput. Struct.
,
190
, pp.
75
107
.10.1016/j.compstruc.2017.05.003
8.
Weickenmeier
,
J.
,
Jabareen
,
M.
, and
Mazza
,
E.
,
2015
, “
Suction Based Mechanical Characterization of Superficial Facial Soft Tissues
,”
J. Biomech.
,
48
(
16
), pp.
4279
4286
.10.1016/j.jbiomech.2015.10.039
9.
Müller
,
B.
,
Elrod
,
J.
,
Pensalfini
,
M.
,
Hopf
,
R.
,
Distler
,
O.
,
Schiestl
,
C.
, and
Mazza
,
E.
,
2018
, “
A Novel Ultra-Light Suction Device for Mechanical Characterization of Skin
,”
PLoS One
,
13
(
8
), p.
e0201440
.10.1371/journal.pone.0201440
10.
Luebberding
,
S.
,
Krueger
,
N.
, and
Kerscher
,
M.
,
2014
, “
Mechanical Properties of Human Skin In Vivo: A Comparative Evaluation in 300 Men and Women
,”
Skin Res. Technol.
,
20
(
2
), pp.
127
135
.10.1111/srt.12094
11.
Draaijers
,
L. J.
,
Botman
,
Y. A. M.
,
Tempelman
,
F. R. H.
,
Kreis
,
R. W.
,
Middelkoop
,
E.
, and
van Zuijlen
,
P. P. M.
,
2004
, “
Skin Elasticity Meter or Subjective Evaluation in Scars: A Reliability Assessment
,”
Burns
,
30
(
2
), pp.
109
114
.10.1016/j.burns.2003.09.003
12.
Dobrev
,
H.
,
2000
, “
Use of Cutometer to Assess Epidermal Hydration
,”
Skin Res. Technol.
,
6
(
4
), pp.
239
244
.10.1034/j.1600-0846.2000.006004239.x
13.
Krueger
,
N.
,
Luebberding
,
S.
,
Oltmer
,
M.
,
Streker
,
M.
, and
Kerscher
,
M.
,
2011
, “
Age-Related Changes in Skin Mechanical Properties: A Quantitative Evaluation of 120 Female Subjects
,”
Skin Res. Technol.
,
17
(
2
), pp.
141
148
.10.1111/j.1600-0846.2010.00486.x
14.
Abbas
,
D. B.
,
Lavin
,
C. V.
,
Fahy
,
E. J.
,
Griffin
,
M.
,
Guardino
,
N.
,
King
,
M.
,
Chen
,
K.
,
Lorenz
,
P. H.
,
Gurtner
,
G. C.
,
Longaker
,
M. T.
,
Momeni
,
A.
, and
Wan
,
D. C.
,
2022
, “
Standardizing Dimensionless Cutometer Parameters to Determine In Vivo Elasticity of Human Skin
,”
Adv. Wound Care
,
11
(
6
), pp.
297
310
.10.1089/wound.2021.0082
15.
Mueller
,
B.
,
Elrod
,
J.
,
Distler
,
O.
,
Schiestl
,
C.
, and
Mazza
,
E.
,
2021
, “
On the Reliability of Suction Measurements for Skin Characterization
,”
ASME J. Biomech. Eng.
,
143
(
2
), p.
021002
.10.1115/1.4047661
16.
Kvistedal
,
Y.
, and
Nielsen
,
P.
,
2009
, “
Estimating Material Parameters of Human Skin In Vivo
,”
Biomech. Model. Mechanobiol.
,
8
(
1
), pp.
1
8
.10.1007/s10237-007-0112-z
17.
Buganza Tepole
,
A.
,
Gart
,
M.
,
Purnell
,
C. A.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2015
, “
Multi-View Stereo Analysis Reveals Anisotropy of Prestrain, Deformation, and Growth in Living Skin
,”
Biomech. Model. Mechanobiol.
,
14
(
5
), pp.
1007
1019
.10.1007/s10237-015-0650-8
18.
Laiacona
,
D.
,
Cohen
,
J.
,
Coulon
,
K.
,
Lipsky
,
Z. W.
,
Maiorana
,
C.
,
Boltyanskiy
,
R.
,
Dufresne
,
E. R.
, and
German
,
G. K.
,
2019
, “
Non-Invasive In Vivo Quantification of Human Skin Tension Lines
,”
Acta Biomater.
,
88
, pp.
141
148
.10.1016/j.actbio.2019.02.003
19.
Xiang
,
X.
,
Yan
,
F.
,
Yang
,
Y.
,
Tang
,
Y.
,
Wang
,
L.
,
Zeng
,
J.
, and
Qiu
,
L.
,
2017
, “
Quantitative Assessment of Healthy Skin Elasticity: Reliability and Feasibility of Shear Wave Elastography
,”
Ultrasound Med. Biol.
,
43
(
2
), pp.
445
452
.10.1016/j.ultrasmedbio.2016.10.002
20.
Gahagnon
,
S.
,
Mofid
,
Y.
,
Josse
,
G.
, and
Ossant
,
F.
,
2012
, “
Skin Anisotropy In Vivo and Initial Natural Stress Effect: A Quantitative Study Using High-Frequency Static Elastography
,”
J. Biomech.
,
45
(
16
), pp.
2860
2865
.10.1016/j.jbiomech.2012.08.032
21.
Deroy
,
C.
,
Destrade
,
M.
,
Mc Alinden
,
A.
, and
N’ı Annaidh
,
A.
,
2017
, “
Non-Invasive Evaluation of Skin Tension Lines With Elastic Waves
,”
Skin Res. Technol.
,
23
(
3
), pp.
326
335
.10.1111/srt.12339
22.
Tran
,
H. V.
,
Charleux
,
F.
,
Rachik
,
M.
,
Ehrlacher
,
A.
, and
Ho Ba Tho
,
M. C.
,
2007
, “
In Vivo Characterization of the Mechanical Properties of Human Skin Derived From Mri and Indentation Techniques
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
6
), pp.
401
407
.10.1080/10255840701550287
23.
Groves
,
R. B.
,
Coulman
,
S. A.
,
Birchall
,
J. C.
, and
Evans
,
S. L.
,
2013
, “
An Anisotropic, Hyperelastic Model for Skin: Experimental Measurements, Finite Element Modelling and Identification of Parameters for Human and Murine Skin
,”
J. Mech. Behav. Biomed. Mater.
,
18
, pp.
167
180
.10.1016/j.jmbbm.2012.10.021
24.
Sheng
,
J.
,
Guo
,
H.
,
Cao
,
Y.
, and
Feng
,
X.
,
2018
, “
Regional Stretch Method to Measure the Elastic and Hyperelastic Properties of Soft Materials
,”
Sci. China Phys. Mech. Astron.
,
61
(
2
), pp.
1
9
.10.1007/s11433-017-9118-0
25.
Hendriks
,
F. M.
,
Brokken
,
D.
,
Van Eemeren
,
J. T. W. M.
,
Oomens
,
C. W. J.
,
Baaijens
,
F. P. T.
, and
Horsten
,
J. B. A. M.
,
2003
, “
A Numerical-Experimental Method to Characterize the Non-Linear Mechanical Behaviour of Human Skin
,”
Skin Res. Technol.
,
9
(
3
), pp.
274
283
.10.1034/j.1600-0846.2003.00019.x
26.
Barbarino
,
G. G.
,
Jabareen
,
M.
, and
Mazza
,
E.
,
2011
, “
Experimental and Numerical Study on the Mechanical Behavior of the Superficial Layers of the Face
,”
Skin Res. Technol.
,
17
(
4
), pp.
434
444
.10.1111/j.1600-0846.2011.00515.x
27.
Lakhani
,
P.
,
Dwivedi
,
K. K.
,
Parashar
,
A.
, and
Kumar
,
N.
,
2021
, “
Non-Invasive In Vivo Quantification of Directional Dependent Variation in Mechanical Properties for Human Skin
,”
Front. Bioeng. Biotechnol.
,
9
, p.
979
.10.3389/fbioe.2021.74949
28.
Jacquet
,
E.
,
Chambert
,
J.
,
Pauchot
,
J.
, and
Sandoz
,
P.
,
2017
, “
Intra-and Inter-Individual Variability in the Mechanical Properties of the Human Skin From In Vivo Measurements on 20 Volunteers
,”
Skin Res. Technol.
,
23
(
4
), pp.
491
499
.10.1111/srt.12361
29.
Iivarinen
,
J. T.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
, and
Jurvelin
,
J. S.
,
2013
, “
Experimental and Computational Analysis of Soft Tissue Mechanical Response Under Negative Pressure in Forearm
,”
Skin Res. Technol.
,
19
(
1
), pp.
e356
e365
.10.1111/j.1600-0846.2012.00652.x
30.
Iivarinen
,
J. T.
,
Korhonen
,
R. K.
, and
Jurvelin
,
J. S.
,
2014
, “
Experimental and Numerical Analysis of Soft Tissue Stiffness Measurement Using Manual Indentation Device–Significance of Indentation Geometry and Soft Tissue Thickness
,”
Skin Res. Technol.
,
20
(
3
), pp.
347
354
.10.1111/srt.12125
31.
Bilionis
,
I.
, and
Zabaras
,
N.
,
2014
, “
Solution of Inverse Problems With Limited Forward Solver Evaluations: A Bayesian Perspective
,”
Inverse Probl.
,
30
(
1
), p.
015004
.10.1088/0266-5611/30/1/015004
32.
Razavi
,
S.
,
Tolson
,
B. A.
, and
Burn
,
D. H.
,
2012
, “
Review of Surrogate Modeling in Water Resources
,”
Water Resour. Res.
,
48
(
7
), p. W07401.10.1029/2011WR011527
33.
Lejeune
,
E.
, and
Zhao
,
B.
,
2021
, “
Exploring the Potential of Transfer Learning for Metamodels of Heterogeneous Material Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
117
, p.
104276
.10.1016/j.jmbbm.2020.104276
34.
Lee
,
T.
,
Turin
,
S. Y.
,
Gosain
,
A. K.
,
Bilionis
,
I.
, and
Buganza Tepole
,
A.
,
2018
, “
Propagation of Material Behavior Uncertainty in a Nonlinear Finite Element Model of Reconstructive Surgery
,”
Biomech. Model. Mechanobiol.
,
17
(
6
), pp.
1857
1873
.10.1007/s10237-018-1061-4
35.
Bishop
,
C. M.
,
2006
, “
Pattern Recognition and Machine Learning
,”
Information Science and Statistics
,
Springer
,
New York
.
36.
Bilionis
,
I.
, and
Zabaras
,
N.
,
2012
, “
Multi-Output Local Gaussian Process Regression: Applications to Uncertainty Quantification
,”
J. Comput. Phys.
,
231
(
17
), pp.
5718
5746
.10.1016/j.jcp.2012.04.047
37.
Stowers
,
C.
,
Lee
,
T.
,
Bilionis
,
I.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2021
, “
Improving Reconstructive Surgery Design Using Gaussian Process Surrogates to Capture Material Behavior Uncertainty
,”
J. Mech. Behav. Biomed. Mater.
,
118
, p.
104340
.10.1016/j.jmbbm.2021.104340
38.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
39.
Björck
,
Å.
,
1996
,
Numerical Methods for Least Squares Problems
,
SIAM
, Philadelphia, PA.
40.
Atkinson
,
S.
, and
Zabaras
,
N.
,
2019
, “
Structured Bayesian Gaussian Process Latent Variable Model: Applications to Data-Driven Dimensionality Reduction and High-Dimensional Inversion
,”
J. Comput. Phys.
,
383
, pp.
166
195
.10.1016/j.jcp.2018.12.037
41.
Robert
,
C. P.
, and
Casella
,
G.
,
1999
,
Monte Carlo Statistical Methods
, Vol.
2
,
Springer
, New York.
42.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
43.
Annaidh
,
A. N.
,
Bruyere
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Maurini
,
C.
,
Otténio
,
M.
, and
Saccomandi
,
G.
,
2012
, “
Automated Estimation of Collagen Fibre Dispersion in the Dermis and Its Contribution to the Anisotropic Behaviour of Skin
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1666
1678
.10.1007/s10439-012-0542-3
44.
Tonge
,
T. K.
,
Atlan
,
L. S.
,
Voo
,
L. M.
, and
Nguyen
,
T. D.
,
2013
, “
Full-Field Bulge Test for Planar Anisotropic Tissues: Part I-Experimental Methods Applied to Human Skin Tissue
,”
Acta Biomater.
,
9
(
4
), pp.
5913
5925
.10.1016/j.actbio.2012.11.035
45.
Tonge
,
T. K.
,
Voo
,
L. M.
, and
Nguyen
,
T. D.
,
2013
, “
Full-Field Bulge Test for Planar Anisotropic Tissues: Part II-A Thin Shell Method for Determining Material Parameters and Comparison of Two Distributed Fiber Modeling Approaches
,”
Acta Biomater.
,
9
(
4
), pp.
5926
5942
.10.1016/j.actbio.2012.11.034
46.
GPy
,
2012
, “
GPy: A Gaussian Process Framework in Python
,” accessed July 7, 2022, http://github.com/SheffieldML/GPy
47.
Salvatier
,
J.
,
Wiecki
,
T. V.
, and
Fonnesbeck
,
C.
,
2016
, “
Probabilistic Programming in Python Using pymc3
,”
PeerJ Comput. Sci.
,
2
, p.
e55
.10.7717/peerj-cs.55
48.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
, pp.
271
280
.10.1016/S0378-4754(00)00270-6
49.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.10.1016/0951-8320(96)00002-6
50.
Herman
,
J.
, and
Usher
,
W.
,
2017
, “
SALib: An Open-Source Python Library for Sensitivity Analysis
,”
J. Open Source Software
,
2
(
9
), p.
97
.10.21105/joss.00097
51.
Tac
,
V.
,
Sree
,
V. D.
,
Rausch
,
M. K.
, and
Tepole
,
A. B.
,
2021
, “
Data-Driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue
,” e-print
arXiv:2107.05388
.10.48550/arXiv.2107.05388
52.
Eskandari
,
M.
,
Nordgren
,
T. M.
, and
O'Connell
,
G. D.
,
2019
, “
Mechanics of Pulmonary Airways: Linking Structure to Function Through Constitutive Modeling, Biochemistry, and Histology
,”
Acta Biomater.
,
97
, pp.
513
523
.10.1016/j.actbio.2019.07.020
53.
Wilkes
,
G. L.
,
Brown
,
I. A.
, and
Wildnauer
,
R. H.
,
1973
, “
The Biomechanical Properties of Skin
,”
CRC Crit. Rev. Bioeng.
,
1
(
4
), pp.
453
495
.https://pubmed.ncbi.nlm.nih.gov/4581809/
54.
Maurel
,
W.
,
Thalmann
,
D.
,
Wu
,
Y.
, and
Thalmann
,
N. M.
,
1998
,
Biomechanical Models for Soft Tissue Simulation
, Vol.
48
,
Springer
, Berlin.
55.
Limbert
,
G.
,
2017
, “
Mathematical and Computational Modelling of Skin Biophysics: A Review
,”
Proc. R. Soc. A
,
473
(
2203
), p.
20170257
.10.1098/rspa.2017.0257
56.
Weickenmeier
,
J.
, and
Mazza
,
E.
,
2019
, “
Inverse Methods
,”
Skin Biophysics
,
Springer
, Cham, Switzerland, pp.
193
213
.
57.
Sachs
,
D.
,
Wahlsten
,
A.
,
Kozerke
,
S.
,
Restivo
,
G.
, and
Mazza
,
E.
,
2021
, “
A Biphasic Multilayer Computational Model of Human Skin
,”
Biomech. Model. Mechanobiol.
,
20
(
3
), pp.
969
982
.10.1007/s10237-021-01424-w
58.
Cohn
,
D. A.
,
Ghahramani
,
Z.
, and
Jordan
,
M. I.
,
1996
, “
Active Learning With Statistical Models
,”
J. Artif. Intell. Res.
,
4
, pp.
129
145
.10.1613/jair.295
59.
Kapoor
,
A.
,
Grauman
,
K.
,
Urtasun
,
R.
, and
Darrell
,
T.
, “
Active Learning With Gaussian Processes for Object Categorization
,”
2007 IEEE 11th International Conference on Computer Vision
, Rio de Janeiro, Brazil, Oct. 14–21,
pp.
1
8
.10.1109/ICCV.2007.4408844
60.
Chen
,
J.
,
Kang
,
L.
, and
Lin
,
G.
,
2021
, “
Gaussian Process Assisted Active Learning of Physical Laws
,”
Technometrics
,
63
(
3
), pp.
329
342
.10.1080/00401706.2020.1817790
61.
Costabal
,
F. S.
,
Perdikaris
,
P.
,
Kuhl
,
E.
, and
Hurtado
,
D. E.
,
2019
, “
Multi-Fidelity Classification Using Gaussian Processes: Accelerating the Prediction of Large-Scale Computational Models
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112602
.10.1016/j.cma.2019.112602
62.
Piérard
,
G. E.
,
Piérard
,
S.
,
Delvenne
,
P.
, and
Piérard-Franchimont
,
C.
,
2013
, “
In Vivo Evaluation of the Skin Tensile Strength by the Suction Method: Pilot Study Coping With Hysteresis and Creep Extension
,”
Int. Scholarly Res. Not.
,
2013
, pp.
1
7
.10.1155/2013/841217
63.
Hendriks
,
F.
,
Brokken
,
D.
,
Oomens
,
C.
,
Bader
,
D.
, and
Baaijens
,
F.
,
2006
, “
The Relative Contributions of Different Skin Layers to the Mechanical Behavior of Human Skin In Vivo Using Suction Experiments
,”
Med. Eng. Phys.
,
28
(
3
), pp.
259
266
.10.1016/j.medengphy.2005.07.001
64.
Hara
,
Y.
,
Masuda
,
Y.
,
Hirao
,
T.
, and
Yoshikawa
,
N.
,
2013
, “
The Relationship Between the Young's Modulus of the Stratum Corneum and Age: A Pilot Study
,”
Skin Res. Technol.
,
19
(
3
), pp.
339
345
.10.1111/srt.12054
65.
Sano
,
M.
,
Hirakawa
,
S.
,
Yamanaka
,
Y.
,
Naruse
,
E.
,
Inuzuka
,
K.
,
Saito
,
T.
,
Katahashi
,
K.
,
Yata
,
T.
,
Kayama
,
T.
,
Tsuyuki
,
H.
,
Yamamoto
,
N.
,
Takeuchi
,
H.
, and
Unno
,
N.
,
2020
, “
Development of a Noninvasive Skin Evaluation Method for Lower Limb Lymphedema
,”
Lymphatic Res. Biol.
,
18
(
1
), pp.
7
15
.10.1089/lrb.2018.0089
66.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
,
2004
, “
A Rheological Network Model for the Continuum Anisotropic and Viscoelastic Behavior of Soft Tissue
,”
Biomech. Model. Mechanobiol.
,
3
(
1
), pp.
56
65
.10.1007/s10237-004-0049-4
67.
Pensalfini
,
M.
,
Weickenmeier
,
J.
,
Rominger
,
M.
,
Santoprete
,
R.
,
Distler
,
O.
, and
Mazza
,
E.
,
2018
, “
Location-Specific Mechanical Response and Morphology of Facial Soft Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
108
115
.10.1016/j.jmbbm.2017.10.021
You do not currently have access to this content.