Abstract

The annulus fibrosus is the ring-like exterior of the intervertebral disc, which is composed of concentrically organized layers of collagen fiber bundles. The mechanical properties of the annulus have been studied extensively; however, tests are typically performed on extracted fragments or multilayered samples of the annulus and not on the annulus as a whole. The purpose of this study was twofold: (1) to develop a novel testing technique to measure the mechanical properties of the intact, isolated annulus; and (2) to perform a preliminary analysis of the rate-dependency of these mechanical properties. Twenty-nine whole annulus ring samples were dissected from 11 skeletally mature Sprague Dawley rat tails and underwent a tensile failure test at either 2%/s (n = 16) or 20%/s (n = 13). Force and displacement were sampled at 100 Hz and were subsequently normalized to stress and strain. Various mechanical properties were derived from the stress–strain curves and statistically compared between the rates. All mechanical variables, with the exception of initial failure stress, were found to be unaffected by rate. Interestingly, initial failure stress was higher for samples tested at the slower rate compared to the higher rate which is atypical for viscoelastic tissues. Although in general rate did not appear to impact the annulus ring response to tensile loading, this novel, intact annular ring testing technique provides an alternative way to quantify mechanical properties of the annulus.

References

1.
Vos
,
T.
,
Abajobir
,
A. A.
,
Abate
,
K. H.
,
Abbafati
,
C.
,
Abbas
,
K. M.
,
Abd-Allah
,
F.
,
Abdulkader
,
R. S.
, et al.,
2017
, “
Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 328 Diseases and Injuries for 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016
,”
Lancet (British Ed.)
,
390
(
10100
), pp.
1211
1259
.10.1016/S0140-6736(17)32154-2
2.
Ambard
,
D.
, and
Cherblanc
,
F.
,
2009
, “
Mechanical Behavior of Annulus Fibrosus: A Microstructural Model of Fibers Reorientation
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2256
2265
.10.1007/s10439-009-9761-7
3.
Stewart
,
D. M.
, and
Gregory
,
D. E.
,
2016
, “
The Use of Intermittent Trunk Flexion to Alleviate Low Back Pain During Prolonged Standing
,”
J. Electromyogr. Kinesiol.
,
27
, pp.
46
51
.10.1016/j.jelekin.2016.01.007
4.
Wu
,
Q.
,
2017
, “
Intervertebral Disc Aging, Degeneration, and Associated Potential Molecular Mechanisms
,”
J. Head Neck Spine Surg.
,
1
(
4
), p. 555569.10.19080/jhnss.2017.01.555569
5.
Gregory
,
D. E.
,
Bae
,
W. C.
,
Sah
,
R. L.
, and
Masuda
,
K.
,
2014
, “
Disc Degeneration Reduces the Delamination Strength of the Annulus Fibrosus in the Rabbit Annular Disc Puncture Model
,”
Spine J.
,
14
(
7
), pp.
1265
1271
.10.1016/j.spinee.2013.07.489
6.
Harvey-Burgess
,
M.
, and
Gregory
,
D. E.
,
2019
, “
The Effect of Axial Torsion on the Mechanical Properties of the Annulus Fibrosus
,”
Spine
,
44
(
4
), pp.
E195
E201
.10.1097/BRS.0000000000002803
7.
Tavakoli
,
J.
,
2017
, “
Region–Media Coupling in Characterization and Modelling of the Disc Annulus Single Lamella Swelling
,”
Med. Biol. Eng. Comput.
,
55
(
8
), pp.
1483
1492
.10.1007/s11517-016-1609-3
8.
Monaco
,
L. A.
,
DeWitte-Orr
,
S. J.
, and
Gregory
,
D. E.
,
2016
, “
A Comparison Between Porcine, Ovine, and Bovine Intervertebral Disc Anatomy and Single Lamella Annulus Fibrosus Tensile Properties
,”
J. Morphol.
,
277
(
2
), pp.
244
251
.10.1002/jmor.20492
9.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2011
, “
Does Vibration Influence the Initiation of Intervertebral Disc Herniation? An Examination of Herniation Occurrence Using a Porcine Cervical Disc Model
,”
Spine
,
36
(
4
), pp.
E225
E231
.10.1097/BRS.0b013e3181d89094
10.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
11.
Pham
,
D. T.
,
Shapter
,
J. G.
, and
Costi
,
J. J.
,
2018
, “
Tensile Behaviour of Individual Fibre Bundles in the Human Lumbar Anulus Fibrosus
,”
J. Biomech.
,
67
, pp.
24
31
.10.1016/j.jbiomech.2017.11.016
12.
Werbner
,
B.
,
Lee
,
M.
,
Lee
,
A.
,
Yang
,
L.
,
Habib
,
M.
,
Fields
,
A. J.
, and
O'Connell
,
G. D.
,
2022
, “
Non-Enzymatic Glycation of Annulus Fibrosus Alters Tissue-Level Failure Mechanics in Tension
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
104992
.10.1016/j.jmbbm.2021.104992
13.
McMorran
,
J. G.
, and
Gregory
,
D. E.
,
2021
, “
The Effect of Compressive Loading Rate on Annulus Fibrosus Strength Following Endplate Fracture
,”
Med. Eng. Phys.
,
93
, pp.
17
26
.10.1016/j.medengphy.2021.05.010
14.
Ghelani
,
R. N.
,
Zwambag
,
D. P.
, and
Gregory
,
D. E.
,
2020
, “
Rapid Increase in Intradiscal Pressure in Porcine Cervical Spine Units Negatively Impacts Annulus Fibrosus Strength
,”
J. Biomech.
,
108
, p.
109888
.10.1016/j.jbiomech.2020.109888
15.
Snow
,
C. R.
,
Harvey-Burgess
,
M.
,
Laird
,
B.
,
Brown
,
S.
, and
Gregory
,
D. E.
,
2018
, “
Pressure-Induced End-Plate Fracture in the Porcine Spine: Is the Annulus Fibrosus Susceptible to Damage?
,”
Eur. Spine J.
,
27
(
8
), pp.
1767
1774
.10.1007/s00586-017-5428-5
16.
Gruevski
,
K. M.
,
Gooyers
,
C. E.
,
Karakolis
,
T.
, and
Callaghan
,
J. P.
,
2016
, “
The Effect of Local Hydration Environment on the Mechanical Properties and Unloaded Temporal Changes of Isolated Porcine Annular Samples
,”
ASME J. Biomech. Eng.
,
138
(
10
), p. 104502.10.1115/1.4034335
17.
Gooyers
,
C. E.
, and
Callaghan
,
J. P.
,
2016
, “
Peak Stress in the Annulus Fibrosus Under Cyclic Biaxial Tensile Loading
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051006
.10.1115/1.4032996
18.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2012
, “
An Examination of the Mechanical Properties of the Annulus Fibrosus: The Effect of Vibration on the Intra-Lamellar Matrix Strength
,”
Med. Eng. Phys.
,
34
(
4
), pp.
472
477
.10.1016/j.medengphy.2011.08.007
19.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2011
, “
A Comparison of Uniaxial and Biaxial Mechanical Properties of the Annulus Fibrosus: A Porcine Model
,”
ASME J. Biomech. Eng.
,
133
(
2
), p. 024503.10.1115/1.4003327
20.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2010
, “
An Examination of the Influence of Strain Rate on Subfailure Mechanical Properties of the Annulus Fibrosus
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091010
.10.1115/1.4001945
21.
Guerin
,
H. A.
, and
Elliott
,
D. M.
,
2006
, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
,
39
(
8
), pp.
1410
1418
.10.1016/j.jbiomech.2005.04.007
22.
Tavakoli
,
J.
, and
Costi
,
J. J.
,
2018
, “
New Insights Into the Viscoelastic and Failure Mechanical Properties of the Elastic Fiber Network of the Inter-Lamellar Matrix in the Annulus Fibrosus of the Disc
,”
Acta Biomater.
,
77
, pp.
292
300
.10.1016/j.actbio.2018.07.023
23.
Tavakoli
,
J.
,
Amin
,
D. B.
,
Freeman
,
B.
, and
Costi
,
J. J.
,
2018
, “
The Biomechanics of the Inter-Lamellar Matrix and the Lamellae During Progression to Lumbar Disc Herniation: Which is the Weakest Structure?
,”
Ann. Biomed. Eng.
,
46
(
9
), pp.
1280
1291
.10.1007/s10439-018-2056-0
24.
Smith
,
L. J.
,
Byers
,
S.
,
Costi
,
J. J.
, and
Fazzalari
,
N. L.
,
2008
, “
Elastic Fibers Enhance the Mechanical Integrity of the Human Lumbar Anulus Fibrosus in the Radial Direction
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
214
223
.10.1007/s10439-007-9421-8
25.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.10.1002/jor.1100150605
26.
Gregory
,
D. E.
,
Veldhuis
,
J. H.
,
Horst
,
C.
,
Wayne Brodland
,
G.
, and
Callaghan
,
J. P.
,
2011
, “
Novel Lap Test Determines the Mechanics of Delamination Between Annular Lamellae of the Intervertebral Disc
,”
J. Biomech.
,
44
(
1
), pp.
97
102
.10.1016/j.jbiomech.2010.08.031
27.
Chuang
,
S.-Y.
,
Odono
,
R. M.
, and
Hedman
,
T. P.
,
2007
, “
Effects of Exogenous Crosslinking on In Vitro Tensile and Compressive Moduli of Lumbar Intervertebral Discs
,”
Clin. Biomech.
,
22
(
1
), pp.
14
20
.10.1016/j.clinbiomech.2006.08.001
28.
Vergari
,
C.
,
Chan
,
D.
,
Clarke
,
A.
,
Mansfield
,
J. C.
,
Meakin
,
J. R.
, and
Winlove
,
P. C.
,
2017
, “
Bovine and Degenerated Human Annulus Fibrosus: A Microstructural and Micromechanical Comparison
,”
Biomech. Model. Mechanobiol.
,
16
(
4
), pp.
1475
1484
.10.1007/s10237-017-0900-z
29.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine
,
20
(
24
), pp.
2690
2701
.10.1097/00007632-199512150-00010
30.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
256
263
.10.1115/1.1374202
31.
Wagner
,
D. R.
, and
Lotz
,
J. C.
,
2004
, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
,
22
(
4
), p.
901
.10.1016/j.orthres.2003.12.012
32.
O'Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2009
, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111007
.10.1115/1.3212104
You do not currently have access to this content.