Abstract

A vortex whistle produces a fundamental frequency proportional to the inlet flowrate. Recent investigations using vortex whistles have focused on the use of this relationship to quantify aspects of respiratory function. Despite promising results, there is a lack of understanding of the physical mechanisms underlying vortex whistle function. This paper begins with a principled study of the aero-acoustic properties of the vortex whistle. First, a high-fidelity computational fluid dynamics (CFD) simulation was developed to predict the unsteady flow field induced by the vortex whistle when the expiratory flow is applied. A computational aero-acoustic analysis (CAA) was applied to predict the acoustic response of the vortex whistle and to capture the frequency and level of the signature spectral peaks. The CFD is validated against prior experimental data on the vortex whistle. The CFD was used to: (a) determine the source of the vortex whistle harmonics and (b) investigate the effect of an outlet tube terminator, proposed by Awan and Awan (2020, “Use of a Vortex Whistle for Measures of Respiratory Capacity,” J. Voice). The CFD and CAA indicated that the harmonics are generated by the cylindrical cavity of the vortex whistle, and the outlet terminator increases harmonic signal-to-noise ratio by increasing the pressure fluctuation within the cylindrical cavity. These results support the addition of the outlet tube terminator and provide insight into future design modifications that will enhance the reliability of the vortex whistle analyses and enable additional measures of respiratory capacity.

References

1.
Vonnegut
,
B.
,
1954
, “
A Vortex Whistle
,”
J. Acoust. Soc. Am.
,
26
(
1
), pp.
18
20
.10.1121/1.1907282
2.
Michelson
,
I.
,
1955
, “
Theory of Vortex Whistle
,”
J. Acoust. Soc. Am.
,
27
(
5
), pp.
930
931
.10.1121/1.1908080
3.
Chanaud
,
R.
,
1963
, “
Experiments Concerning the Vortex Whistle
,”
J. Acoust. Soc. Am.
,
35
(
7
), pp.
953
960
.10.1121/1.1918639
4.
Di
,
Y.-b.
,
Gerhardy
,
C.
, and
Karl Schomburg
,
W.
,
2013
, “
Vortex Whistles Employed as Remote Micro Flow Sensors
,”
Flow Meas. Instrum.
,
34
, pp.
11
18
.10.1016/j.flowmeasinst.2013.07.008
5.
Goel
,
M.
,
Saba
,
E.
,
Stiber
,
M.
,
Whitmire
,
E.
,
Fromm
,
J.
,
Larson
,
E. C.
,
Borriello
,
G.
, and
Patel
,
S. N.
,
2016
, “
SpiroCall: Measuring Lung Function Over a Phone Call
,”
Proceedings of the CHI Conference on Human Factors in Computing Systems
, San Jose, CA, May 7–12, pp.
5675
5685
.10.1145/2858036.2858401
6.
Kaiser
,
S.
,
Parks
,
A.
,
Leopard
,
P.
,
Albright
,
C.
,
Carlson
,
J.
,
Goel
,
M.
,
Nassehi
,
D.
, and
Larson
,
E. C.
,
2016
, “
Design and Learnability of Vortex Whistles for Managing Chronic Lung Function Via Smartphones
,”
Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp '16
, Heidelberg, Germany, Sept. 12–16, pp.
569
580
.10.1145/2971648.2971726
7.
Mikalsen
,
I. B.
,
Nassehi
,
D.
, and
Øymar
,
K.
,
2019
, “
Vortex Whistle and Smart Phone Application for Peak Flow Recordings in Asthmatic Children: A Feasibility Study
,”
Telemed. e-Health
,
25
(
11
), pp.
1077
1082
.10.1089/tmj.2018.0270
8.
Hixon
,
T.
, and
Putnam
,
A.
,
1983
, “
Voice Disorders in Relation to Respiratory Kinematics
,”
Semin. Speech Lang.
,
4
(
3
), pp.
217
231
.
9.
Iwarsson
,
J.
,
Thomasson
,
M.
, and
Sundberg
,
J.
,
1998
, “
Effects of Lung Volume on the Glottal Voice Source
,”
J. Voice
,
12
(
4
), pp.
424
433
.10.1016/S0892-1997(98)80051-9
10.
Lowell
,
S.
,
Barkmeier-Kraemer
,
J.
,
Hoit
,
J.
, and
Story
,
B.
,
2008
, “
Respiratory and Laryngeal Function During Spontaneous Speaking in Teachers With Voice Disorders
,”
J. Speech, Lang. Hear. Res.
,
51
(
2
), pp.
333
349
.10.1044/1092-4388(2008/025)
11.
Lewandowski
,
A.
, and
Gillespie
,
A.
,
2016
, “
The Relationship Between Voice and Breathing in the Assessment and Treatment of Voice Disorders
,”
Perspect. ASHA Spec. Interest Groups
,
1
(
3
), pp.
94
104
.10.1044/persp1.SIG3.94
12.
Desjardins
,
M.
,
Halstead
,
L.
,
Simpson
,
A.
,
Flume
,
P.
, and
Bonilha
,
H. S.
,
2022
, “
The Impact of Respiratory Function on Voice in Patients With Presbyphonia
,”
J. Voice
, 36(2), pp.
256
271
.10.1016/j.jvoice.2020.05.027
13.
Sato
,
H. H.
,
Ohara
,
M.
,
Watanabe
,
K.
, and
Sato
,
H. H.
,
1999
, “
Application of the Vortex Whistle to the Spirometer
,”
Trans. Soc. Instrum. Control Eng.
,
35
(
7
), pp.
840
845
.10.9746/sicetr1965.35.840
14.
Awan
,
S. N.
, and
Awan
,
J. A.
,
2020
, “
Use of a Vortex Whistle for Measures of Respiratory Capacity
,”
J. Voice
, epub.10.1016/j.jvoice.2020.07.038
15.
Wang
,
Y.
,
Chen
,
J.
,
Lee
,
H.
, and
Li
,
K.
,
2012
, “
Accurate Simulations of Surface Pressure Fluctuations and Flow-Induced Noise Near Bluff Body at Low Mach Numbers
,” Seventh International Colloquium on Bluff Body Aerodynamics and Applications (
BBAA7
), Shanghai, China, Sept. 2–6, pp.
1334
1348
.https://www.researchgate.net/publication/301624869_Accurate_simulations_of_surface_pressure_fluctuations_and_flowinduced_noise_near_bluff_body_at_low_mach_numbers
16.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
17.
Lilly
,
K.
,
1966
, “
On the Application of the Eddy Viscosity Concept in the Inertial Sub-Range of Turbulence
,” NCAR, Boulder, CO, Report No. Manuscript
123
.10.5065/D67H1GGQ
18.
Williams
,
J. F.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. Lond. A
,
264
(
1151
), pp.
321
342
.10.1098/rsta.1969.0031
19.
Brentner
,
K. S.
, and
Farassat
,
F.
,
2003
, “
Modeling Aerodynamically Generated Sound of Helicopter Rotors
,”
Prog. Aerosp. Sci.
,
39
(
2–3
), pp.
83
120
.10.1016/S0376-0421(02)00068-4
20.
Farassat
,
F.
,
2007
, “Derivation of Formulations 1 and 1a of FARASSAT,” NASA Langley Research Center, Hampton, VA, Report No.
NASA/TM-2007-214853
.https://ntrs.nasa.gov/citations/20070010579
21.
Hillenbrand
,
J.
,
Cleveland
,
R.
, and
Erickson
,
R. L.
,
1994
, “
Acoustic Correlates of Breathy Vocal Quality
,”
J. Speech Hear. Res.
,
37
(
4
), pp.
769
–7
78
.10.1044/jshr.3704.769
22.
Hillenbrand
,
J.
, and
Houde
,
R.
,
1996
, “
Acoustic Correlates of Breathy Vocal Quality: Dysphonic Voices and Continuous Speech
,”
J. Speech Hear. Res.
,
39
(
2
), pp.
311
321
.10.1044/jshr.3902.311
23.
Awan
,
S.
, and
Roy
,
N.
,
2005
, “
Acoustic Prediction of Voice Type in Women With Functional Dysphonia
,”
J. Voice Off. J. Voice Found.
,
19
(
2
), pp.
268
282
.10.1016/j.jvoice.2004.03.005
24.
Gao
,
C.
,
Zhang
,
X.
,
Wang
,
D.
,
Wang
,
Z.
,
Li
,
J.
, and
Li
,
Z.
,
2018
, “
Reference Values for Lung Function Screening in 10- to 81-Year-Old, Healthy, Never- Smoking Residents of Southeast China
,”
Medicine (United States)
,
97
(
34
), p.
e11904
.10.1097/MD.0000000000011904
You do not currently have access to this content.