Abstract

Convection-enhanced delivery (CED) has been extensively studied for drug delivery to the brain due to its inherent ability to bypass the blood-brain barrier. Unfortunately, CED has also been shown to inadequately distribute therapeutic agents over a large enough targeted tissue volume to be clinically beneficial. In this study, we explore the use of constant pressure infusions in addition to controlled catheter movement as a means to increase volume dispersed (Vd) in an agarose gel brain tissue phantom. Constant flow rate and constant pressure infusions were conducted with a stationary catheter, a catheter retracting at a rate of 0.25 mm/min, and a catheter retracting at a rate of 0.5 mm/min. The 0.25 mm/min and 0.5 mm/min retracting constant pressure catheters resulted in significantly larger Vd compared to any other group, with a 105% increase and a 155% increase compared to the stationary constant flow rate catheter, respectively. These same constant pressure retracting infusions resulted in a 42% and 45% increase in Vd compared to their constant flow rate counterparts. Using constant pressure infusions coupled with controlled catheter movement appears to have a beneficial effect on Vd in agarose gel. Furthermore, constant pressure infusions reveal the fundamental limitation of flow-driven infusions in both controlled catheter movement protocols as well as in stationary protocols where maximum infusion volume can never be reliably obtained.

References

1.
Louis
,
D. N.
,
Ohgaki
,
H.
,
Wiestler
,
O. D.
,
Cavenee
,
W. K.
,
Burger
,
P. C.
,
Jouvet
,
A.
,
Scheithauer
,
B. W.
, and
Kleihues
,
P.
,
2007
, “
The 2007 WHO Classification of Tumours of the Central Nervous System
,”
Acta Neuropathologica
,
114
(
2
), pp.
97
109
.10.1007/s00401-007-0243-4
2.
Ostrom
,
Q. T.
,
Patil
,
N.
,
Cioffi
,
G.
,
Waite
,
K.
,
Kruchko
,
C.
, and
Barnholtz-Sloan
,
J. S.
,
2020
, “
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017
,”
Neuro-oncology
,
22
(
Suppl_1
), pp.
iv1
iv96
.10.1093/neuonc/noaa200
3.
Wallner
,
K. E.
,
Galicich
,
J. H.
,
Krol
,
G.
,
Arbit
,
E.
, and
Malkin
,
M. G.
,
1989
, “
Patterns of Failure Following Treatment of Glioblastoma Mulitform and Anaplastic Astrocytoma
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
16
(
6
), pp.
1405
1409
.10.1016/0360-3016(89)90941-3
4.
Hochberg
,
F. H.
, and
Pruitt
,
A.
,
1980
, “
Assumptions in the Radiotherapy of Glioblastoma
,”
Neurology
,
30
(
9
), pp.
907
911
.10.1212/WNL.30.9.907
5.
Pardridge
,
W. M.
,
2005
, “
The Blood-Brain Barrier: Bottleneck in Brain Drug Development
,”
J Am. Soc. Exp. NeuroTherapeutics
,
2
(
1
), pp.
3
14
.10.1602/neurorx.2.1.3
6.
Bobo
,
R. H.
,
Laske
,
D. W.
,
Akbasak
,
A.
,
Morrison
,
P. F.
,
Dedrick
,
R. L.
, and
Oldfield
,
E. H.
,
1994
, “
Convection-Enhanced Delivery of Macromolecules in the Brain
,”
Proc. Natl. Acad. Sci. USA
,
91
(
6
), pp.
2076
2080
.10.1073/pnas.91.6.2076
7.
Wang
,
W.
,
Sivakumar
,
W.
,
Torres
,
S.
,
Jhaveri
,
N.
,
Vaikari
,
V. P.
,
Gong
,
A.
,
Howard
,
A.
,
Golden
,
E. B.
,
Louie
,
S. G.
,
Schönthal
,
A. H.
,
Hofman
,
F. M.
, and
Chen
,
T. C.
,
2015
, “
Effects of Convection-Enhanced Delivery of Bevacizumab on Survival of Glioma-Bearing Animals
,”
Neurosurgical Focus
,
38
(
3
), p.
E8
.10.3171/2015.1.FOCUS14743
8.
Laske
,
D. W.
,
Youle
,
R. J.
, and
Oldfield
,
E. H.
,
1997
, “
Tumor Regression With Regional Distribution of the Targeted Toxin TF-CRM107 in Patients With Malignant Brain Tumors
,”
Nat Med
,
3
(
12
), pp.
1362
1368
.10.1038/nm1297-1362
9.
Rand
,
R. W.
,
Kreitman
,
R. J.
,
Patronas
,
N.
,
Varricchio
,
F.
,
Pastan
,
I.
, and
Puri
,
R. K.
,
2000
, “
Intratumoral Administration of Recombinant Circularly Permuted Interleukin-4-Pseudonomas Exotoxin in Patients With High-Grade Glioma
,”
Clin Cancer Res.
,
6
(
6
), pp.
2157
2165
.https://aacrjournals.org/clincancerres/article/6/6/2157/288376/Intratumoral-Administration-of-Recombinant
10.
Weber
,
F. W.
,
Floeth
,
F.
,
Asher
,
A.
,
Bucholz
,
R.
,
Berger
,
M. S.
,
Prados
,
M.
,
Chang
,
S.
, and
Bruce
,
J.
,
2003
, “
Local Convection Enhanced Delivery of IL4-Pseudonomas Exotoxin (NBI-3001) for Treatment of Patients With Recurrent Malignant Glioma
,”
Acta Neurochir [Supp]
,
88
, pp.
93
103
.10.1007/978-3-7091-6090-9_15
11.
Lidar
,
Z.
,
Mardor
,
Y.
,
Jonas
,
T.
,
Pfeffer
,
R.
,
Faibel
,
M.
,
Nass
,
D.
,
Hadani
,
M.
, and
Ram
,
Z.
,
2004
, “
Convection-Enhanced Delivery of Paclitaxel for the Treatment of Recurrent Malignant Glioma: A Phase I/II Clinical Study
,”
J. Neurosurgery
,
100
(
3
), pp.
472
479
.10.3171/jns.2004.100.3.0472
12.
Kunwar
,
S.
,
Prados
,
M. D.
,
Chang
,
S. M.
,
Berger
,
M. S.
,
Lang
,
F. F.
,
Piepmeier
,
J. M.
, et al.,
2007
, “
Direct Intracerebral Delivery of Cintredekin Besudotox (IL13-PE38QQR) in Recurrent Malignant Glioma: A Report by the Cintredekin Besudotox Intraparenchymal Study Group
,”
J. Clin. Oncol.
,
25
(
7
), pp.
837
844
.10.1200/JCO.2006.08.1117
13.
Weaver
,
M.
, and
Laske
,
D. W.
,
2003
, “
Transferrin Receptor Ligand-Targeted Toxin Conjugate (Tf-CRM107) for Therapy of Malignant Gliomas
,”
J. Neuro-Oncology
,
65
(
1
), pp.
3
14
.10.1023/A:1026246500788
14.
Kunwar
,
S.
,
Chang
,
S.
,
Westphal
,
M.
,
Vogelbaum
,
M.
,
Sampson
,
J.
,
Barnett
,
G.
, et al.,
2010
, “
Phase III Randomized Trial of CED of IL13-PE38QQR versus Gliadel Wafers for Recurrent Glioblastoma
,”
Neuro-oncology
,
12
(
8
), pp.
871
881
.10.1093/neuonc/nop054
15.
Sampson
,
J. H.
,
Archer
,
G.
,
Pedain
,
C.
,
Wembacher-Schröder
,
E.
,
Westphal
,
M.
,
Kunwar
,
S.
, et al.,
2010
, “
Poor Drug Distribution as a Possible Explanation for the Results of the PRECISE Trial
,”
J. Neurosurg.
,
113
(
2
), pp.
301
309
.10.3171/2009.11.JNS091052
16.
Vogelbaum
,
M. A.
,
Brewer
,
C.
,
Barnett
,
G. H.
,
Mohammadi
,
A. M.
,
Peereboom
,
D. M.
,
Ahluwalia
,
M. S.
, and
Gao
,
S.
,
2018
, “
First-in-Human Evaluation of the Cleveland Multiport Catheter for Convection-Enhanced Delivery of Topotecan in Recurrent High-Grade Glioma: Results of Pilot Trial 1
,”
J. Neurosurg.
, 130(2), pp.
476
485
.10.3171/2017.10.JNS171845
17.
Elenes
,
E. Y.
, and
Rylander
,
C. G.
,
2017
,
Maximizing Local Access to Therapeutic Deliveries in Glioblastoma. Part II: Arborizing Catheter for Convection-Enhanced Delivery in Tissue Phantoms
,
Glioblastoma
,
S.
De Vleeschouwer
, ed.,
Exon Publication
,
Brisbane, Australia
, pp.
359
372
.
18.
Elenes
,
E. Y.
,
Mehta
,
J. N.
,
Hsu
,
F.-C.
,
Whitlow
,
C. T.
,
Debinski
,
W.
,
Rossmeisl
,
J.
,
Tatter
,
S.
, and
Rylander
,
C. G.
,
2021
, “
Convection-Enhanced Arborizing Catheter System Improves Local/Regional Delivery of Infusates Versus a Single-Port Catheter in Ex Vivo Porcine Brain Tissue
,”
ASME J. Eng. Sci. Medical Diagnostics Ther.
,
4
(
1
), p. 011003.10.1115/1.4048935
19.
Krauze
,
M. T.
,
Saito
,
R.
,
Noble
,
C.
,
Tamas
,
M.
,
Bringas
,
J.
,
Park
,
J. W.
,
Berger
,
M. S.
, and
Bankiewicz
,
K.
,
2005
, “
Reflux-Free Cannula for Convection-Enhanced High-Speed Delivery of Therapeutic Agents
,”
J. Neurosurg.
,
103
(
5
), pp.
923
929
.10.3171/jns.2005.103.5.0923
20.
Gill
,
T.
,
Barua
,
N. U.
,
Woolley
,
M.
,
Bienemann
,
A. S.
,
Johnson
,
D. E.
,
Sullivan
,
S. O.
,
Murray
,
G.
,
Fennelly
,
C.
,
Lewis
,
O.
,
Irving
,
C.
,
Wyatt
,
M. J.
,
Moore
,
P.
, and
Gill
,
S. S.
,
2013
, “
In Vitro and In Vivo Testing of a Novel Recessed-Step Catheter for Reflux-Free Convection-Enhanced Drug Delivery to the Brain
,”
J. Neurosci. Method
,
219
(
1
), pp.
1
9
.10.1016/j.jneumeth.2013.06.008
21.
Yin
,
D.
,
Forsayeth
,
J.
, and
Bankiewicz
,
K. S.
,
2010
, “
Optimized Cannula Design and Placement for Convection-Enhanced Delivery in Rat Striatum
,”
J. Neurosci. Method
,
187
(
1
), pp.
46
51
.10.1016/j.jneumeth.2009.12.008
22.
Chen
,
M. Y.
,
Lonser
,
R. R.
,
Morrison
,
P. F.
,
Governale
,
L. S.
, and
Oldfield
,
E. H.
,
1999
, “
Variables Affecting Convection-Enhanced Delivery to the Striatum: A Systematic Examination of Rate of Infusion, Cannula Size, Infusate Concentration, and Tissue–Cannula Sealing Time
,”
J. Neurosurgery
,
90
(
2
), pp.
315
320
.10.3171/jns.1999.90.2.0315
23.
Mehta
,
J. N.
,
McRoberts
,
G. R.
, and
Rylander
,
C. G.
,
2020
, “
Controlled Catheter Movement Affects Dye Dispersal Volume in Agarose Gel Brain Phantoms
,”
Pharmaceutics
,
12
(
8
), p.
753
.10.3390/pharmaceutics12080753
24.
Kirby
,
B. J.
,
2010
,
Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
,
Cambridge University Press
, New York.
25.
Rosemberg
,
R.
, and
Karnopp
,
D.
,
1983
,
Introduction to Physical Systems Dynamics
,
Mac Graw Hill
, New York.
26.
Martanto
,
W.
,
Moore
,
J. S.
,
Couse
,
T.
, and
Prausnitz
,
M. R.
,
2006
, “
Mechanism of Fluid Infusion During Microneedle Insertion and Retraction
,”
J. Controlled Release
,
112
(
3
), pp.
357
361
.10.1016/j.jconrel.2006.02.017
27.
Hood
,
R. L.
,
Ecker
,
T.
,
Andriani
,
R.
,
Robertson
,
J.
,
Rossmeisl
,
J.
, and
Rylander
,
C. G.
,
2013
, “
Augmenting Convection-Enhanced Delivery Through Simultaneous Co-Delivery of Fluids and Laser Energy With a Fiberoptic Microneedle Device
,”
Proc. SPIE BiOS 8576, International Society for Optics and Photonics
, p.
85760G
.10.1117/12.2004854
28.
Andriani
,
R. T.
,
2014
,
Design and Validation of Medical Devices for Photothermally Augmented Treatments
,
M.S. thesis
, Master of Science in Mechanical Engineering,
Virginia Tech
,
Blacksburg, VA
.http://hdl.handle.net/10919/50503
29.
Raghavan
,
R.
,
Brady
,
M. L.
,
Rodriguez-Ponce
,
M. I.
,
Hartlep
,
A.
,
Pedain
,
C.
, and
Sampson
,
J. H.
,
2006
, “
Convection-Enhanced Delivery of Therapeutics for Brain Disease, and Its Optimization
,”
Neurosurg. Focus
,
20
(
4
), p.
E12
.10.3171/foc.2006.20.4.7
30.
Lewis
,
O.
,
Woolley
,
M.
,
Johnson
,
D. E.
,
Fletcher
,
J.
,
Fenech
,
J.
,
Pietrzyk
,
M. W.
,
Barua
,
N. U.
,
Bienemann
,
A. S.
,
Singleton
,
W.
,
Evans
,
S. L.
, and
Gill
,
S. S.
,
2018
, “
Maximising Coverage of Brain Structures Using Controlled Reflux, Convection-Enhanced Delivery and the Recessed Step Catheter
,”
J. Neuroscience Methods
,
308
, pp.
337
345
.10.1016/j.jneumeth.2018.08.029
31.
Elenes
,
E. Y.
,
2018
, “
An Arborizing, Multiport Catheter for Maximizing Drug Distribution in the Brain Via Convection Enhanced Delivery
,”
Doctoral thesis
, The University of Texas at Austin, Austin, TX.http://hdl.handle.net/2152/69265
32.
Cook
,
C. D.
,
2019
,
MRI Compatible Robotic Positioning System for an Arborizing Multiport Catheter
, M.S. thesis, Master of Science in Engineering,
The University of Texas at Austin
,
Austin, TX
.
33.
Sudhakar
,
V.
,
Naidoo
,
J.
,
Samaranch
,
L.
,
Bringas
,
J. R.
,
Lonser
,
R. R.
,
Fiandaca
,
M. S.
, and
Bankiewicz
,
K. S.
,
2020
, “
Infuse-as-You-Go Convective Delivery to Enhance Coverage of Elongated Brain Targets
,”
J. Neurosurg.
,
133
(
2
), pp.
530
8
.10.3171/2019.4.JNS19826
34.
Varenika
,
V.
,
Dickinson
,
P.
,
Bringas
,
J.
,
LeCouteur
,
R.
,
Higgins
,
R.
,
Park
,
J.
,
Fiandaca
,
M. S.
,
Berger
,
M.
,
Sampson
,
J.
, and
Bankiewicz
,
K.
,
2008
, “
Detection of Infusate Leakage in the Brain Using Real-Time Imaging of Convection-Enhanced Delivery
,”
J. Neurosurg.
,
109
(
5
), pp.
874
880
.10.3171/JNS/2008/109/11/0874
35.
Chen
,
Z. J.
,
Gillies
,
G. T.
,
Broaddus
,
W. C.
,
Prabhu
,
S. S.
,
Fillmore
,
H.
,
Mitchell
,
R. M.
,
Corwin
,
F. D.
, and
Fatouros
,
P. P.
,
2004
, “
A Realistic Brain Tissue Phantom for Intraparenchymal Infusion Studies
,”
J. Neurosurg.
,
101
(
2
), pp.
314
322
.10.3171/jns.2004.101.2.0314
36.
Prabhu
,
S. S.
,
Broaddus
,
W. C.
,
Gillies
,
G. T.
,
Loudon
,
W. G.
,
Chen
,
Z. J.
, and
Smith
,
B.
,
1998
, “
Distribution of Macromolecular Dyes in Brain Using Positive Pressure Infusion: A Model for Direct Controlled Delivery of Therapeutic Agents
,”
Surgincal Neurol.
,
50
(
4
), pp.
367
375
.10.1016/S0090-3019(97)00361-3
37.
Lam
,
M. F.
,
Foo
,
S. W.
,
Thomas
,
M. G.
, and
Lind
,
C. R.
,
2014
, “
Infusion-Line Pressure as a Real-Time Monitor of Convection-Enhanced Delivery in Pre-Clinical Models
,”
J. Neurosci. Methods
,
221
, pp.
127
131
.10.1016/j.jneumeth.2013.09.019
38.
Vandergrift
,
W. A.
,
Patel
,
S. J.
,
Nicholas
,
J. S.
, and
Varma
,
A. K.
,
2006
, “
Convection-Enhanced Delivery of Immunotoxins and Radioisotopes for Treatment of Malignant Gliomas
,”
Neurosurg. Focus
,
20
(
4
), p.
E13
.10.3171/foc.2006.20.4.8
39.
Morrison
,
P. F.
,
Chen
,
M. Y.
,
Chadwick
,
R. S.
,
Lonser
,
R. R.
, and
Oldfield
,
E. H.
,
1999
, “
Focal Delivery During Direct Infusion to Brain: Role of Flow Rate, Catheter Diameter, and Tissue Mechanics
,”
Am. J. Physiol.
,
277
(
4
), pp.
R1218
R1229
.10.1152/ajpregu.1999.277.4.R1218
40.
Raghavan
,
R.
,
Mikaelian
,
S.
,
Brady
,
M.
, and
Chen
,
Z.-J.
,
2010
, “
Fluid Infusions From Catheters Into Elastic Tissue: I. Azimuthally Symmetric Backflow in Homogeneous Media
,”
Phys. Med. Biol.
,
55
(
1
), pp.
281
304
.10.1088/0031-9155/55/1/017
41.
Orozco
,
G. A.
,
Smith
,
J. H.
, and
Garcia
,
J. J.
,
2014
, “
Backflow Length Predictions During Flow-Controlled Infusions Using a Nonlinear Biphasic Finite Element Model
,”
Med. Biol. Eng. Comput.
,
52
(
10
), pp.
841
849
.10.1007/s11517-014-1187-1
42.
Lueshen
,
E.
,
Tangen
,
K.
,
Mehta
,
A. I.
, and
Linninger
,
A.
,
2017
, “
Backflow-Free Catheters for Efficient and Safe Convection-Enhanced Delivery of Therapeutics
,”
Med. Eng. Phys.
,
45
, pp.
15
24
.10.1016/j.medengphy.2017.02.018
43.
Sillay
,
K.
,
Hinchman
,
A.
,
Kumbier
,
L.
,
Schomberg
,
D.
,
Ross
,
C.
,
Kubota
,
K.
,
Brady
,
M.
,
Brodsky
,
E.
,
Miranpuri
,
G.
, and
Raghavan
,
R.
,
2013
, “
Strategies for the Delivery of Multiple Collinear Infusion Clouds in Convection-Enhanced Delivery in the Treatment of Parkinson's Disease
,”
Stereotactic Funct. Neurosurgery
,
91
(
3
), pp.
153
161
.10.1159/000345270
44.
Chen
,
Z. J.
,
Broaddus
,
W. C.
,
Viswanathan
,
R. R.
,
Raghavan
,
R.
, and
Gillies
,
G. T.
,
2002
, “
Intraparenchymal Drug Delivery Via Positive-Pressure Infusion: Experimental and Modeling Studies of Poroelasticity in Brain Phantom Gels
,”
IEEE Trans. Biomed. Eng.
,
49
(
2
), pp.
85
96
.10.1109/10.979348
45.
Gillies
,
G.
,
Allison
,
S.
, and
Tissue
,
B.
,
2002
, “
Positive Pressure Infusion of Fluorescent Nanoparticles as a Probe of the Structure of Brain Phantom Gelatins
,”
Nanotechnology
,
13
(
4
), pp.
484
486
.10.1088/0957-4484/13/4/308
46.
Casanova
,
F.
,
Carney
,
P. R.
, and
Sarntinoranont
,
M.
,
2012
, “
Influence of Needle Insertion Speed on Backflow for Convection-Enhanced Delivery
,”
ASME J. Biomech. Eng.
,
134
(
4
), p.
041006
.10.1115/1.4006404
47.
Casanova
,
F.
,
Carney
,
P. R.
, and
Sarntinoranont
,
M.
,
2014
, “
Effect of Needle Insertion Speed on Tissue Injury, Stress, and Backflow Distribution for Convection-Enhanced Delivery in the Rat Brain
,”
PLoS One
,
9
(
4
), p.
e94919
.10.1371/journal.pone.0094919
48.
Sillay
,
K.
,
Schomberg
,
D.
,
Hinchman
,
A.
,
Kumbier
,
L.
,
Ross
,
C.
,
Kubota
,
K.
,
Brodsky
,
E.
, and
Miranpuri
,
G.
,
2012
, “
Benchmarking the ERG Valve Tip and MRI Interventions Smart Flow Neurocatheter Convection-Enhanced Delivery System's Performance in a Gel Model of the Brain: Employing Infusion Protocols Proposed for Gene Therapy for Parkinson's Disease
,”
J. Neural Eng.
,
9
(
2
), p.
026009
.10.1088/1741-2560/9/2/026009
You do not currently have access to this content.