Abstract

The lethal electric field (LEF) thresholds for three typical cerebral cells, including a malignant glioblastoma (GBM) cell line and two cell lines from the healthy blood-brain barrier (BBB), treated by irreversible electroporation (IRE) or high-frequency irreversible electroporation (H-FIRE) protocols were investigated in an in vitro three-dimensional (3D) cell model. A conventional IRE protocol (90 pulses, 1 Hz, and 100-μs pulse duration) and three novel H-FIRE protocols (1–3–1, 0.5–1–0.5, and 1–1–1) were used to treat the cerebral cells in both 3D single-cell and two-cell models. The electrical conductivity of the 3D cell model under different electric field strengths were characterized with the method of electrochemical impedance spectroscopy (EIS). Based on EIS, a numerical electrothermal model of electroporation was built for the determination of the LEF threshold with different protocols and temperature monitoring. Cell viability was assessed by fluorescence staining 6 h after the treatment. The results showed no thermal lethal effect on cells when these protocols were used. The LEF threshold for GBM cells was significantly lower than that of the healthy BBB cells. These results suggest the possibility of selective ablation of human cerebral GBM by IRE and H-FIRE treatments with no injury or reversible injury to healthy cells, and the potential use of IRE or H-FIRE for transient disruption of the BBB to allow chemotherapy to reach the tumor.

References

1.
Thakkar
,
J. P.
,
Dolecek
,
T. A.
,
Horbinski
,
C.
,
Ostrom
,
Q. T.
,
Lightner
,
D. D.
,
Barnholtz-Sloan
,
J. S.
, and
Villano
,
J. L.
,
2014
, “
Epidemiologic and Molecular Prognostic Review of Glioblastoma
,”
Cancer Epidemiol., Biomarkers Prev.
,
23
(
10
), pp.
1985
1996
.10.1158/1055-9965.EPI-14-0275
2.
Davis
,
M. E.
,
2016
, “
Glioblastoma: Overview of Disease and Treatment
,”
Clin. J. Oncol. Nurs.
,
20
(
5
), pp.
S2
S8
.10.1188/16.CJON.S1.2-8
3.
Wilson
,
T. A.
,
Karajannis
,
M. A.
, and
Harter
,
D. H.
,
2014
, “
Glioblastoma Multiforme: State of the Art and Future Therapeutics
,”
Surg. Neurol. Int.
,
5
(
1
), p.
64
.10.4103/2152-7806.132138
4.
Shergalis
,
A.
,
Bankhead
,
A.
, III
,
Luesakul
,
U.
,
Muangsin
,
N.
, and
Neamati
,
N.
,
2018
, “
Current Challenges and Opportunities in Treating Glioblastoma
,”
Pharmacol. Rev.
,
70
(
3
), pp.
412
445
.10.1124/pr.117.014944
5.
O'Brien
,
T. J.
,
Passeri
,
M.
,
Lorenzo
,
M. F.
,
Sulzer
,
J. K.
,
Lyman
,
W. B.
,
Swet
,
J. H.
, and
Vrochides
,
D.
,
2019
, “
Experimental High-Frequency Irreversible Electroporation Using a Single-Needle Delivery Approach for Nonthermal Pancreatic Ablation In Vivo
,”
J. Vasc. Interventional Radiol.
,
30
(
6
), pp.
854
862.e7
.10.1016/j.jvir.2019.01.032
6.
Ringel-Scaia
,
V. M.
,
Beitel-White
,
N.
,
Lorenzo
,
M. F.
,
Brock
,
R. M.
,
Huie
,
K. E.
,
Coutermarsh-Ott
,
S.
, and
Eden
,
K.
,
2019
, “
High-Frequency Irreversible Electroporation Is an Effective Tumor Ablation Strategy That Induces Immunologic Cell Death and Promotes Systemic Anti-Tumor Immunity
,”
EBioMedicine
,
44
, pp.
112
125
.10.1016/j.ebiom.2019.05.036
7.
Arena
,
C. B.
,
Sano
,
M. B.
,
Rossmeisl
,
J. H.
,
Caldwell
,
J. L.
,
Garcia
,
P. A.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2011
, “
High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction
,”
BioMed. Eng. OnLine
,
10
(
1
), p.
102
.10.1186/1475-925X-10-102
8.
Kingham
,
T. P.
,
Karkar
,
A. M.
,
D'Angelica
,
M. I.
,
Allen
,
P. J.
,
Dematteo
,
R. P.
,
Getrajdman
,
G. I.
,
Sofocleous
,
C. T.
,
Solomon
,
S. B.
,
Jarnagin
,
W. R.
, and
Fong
,
Y.
,
2012
, “
Ablation of Perivascular Hepatic Malignant Tumors With Irreversible Electroporation
,”
J. Am. Coll. Surg.
,
215
(
3
), pp.
379
387
.10.1016/j.jamcollsurg.2012.04.029
9.
Onik
,
G.
,
Mikus
,
P.
, and
Rubinsky
,
B.
,
2007
, “
Irreversible Electroporation: Implications for Prostate Ablation
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
295
300
.10.1177/153303460700600405
10.
Pech
,
M.
,
Janitzky
,
A.
,
Wendler
,
J. J.
,
Strang
,
C.
,
Blaschke
,
S.
,
Dudeck
,
O.
,
Ricke
,
J.
, and
Liehr
,
U. B.
,
2011
, “
Irreversible Electroporation of Renal Cell Carcinoma: A First-in-Man Phase I Clinical Study
,”
Cardiovasc. Interventional Radiol.
,
34
(
1
), pp.
132
138
.10.1007/s00270-010-9964-1
11.
Dupuy
,
D. E.
,
Aswad
,
B.
, and
Ng
,
T.
,
2011
, “
Irreversible Electroporation in a Swine Lung Model
,”
CardioVasc. Interventional Radiol.
,
34
(
2
), pp.
391
395
.10.1007/s00270-010-0091-9
12.
Garcia
,
P. A.
,
Neal
,
R. E.
,
Rossmeisl
,
J. H.
, and
Davalos
,
R. V.
,
2010
, “
Non-Thermal Irreversible Electroporation for Deep Intracranial Disorders
,”
Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
2743
2746
.10.1109/IEMBS.2010.5626371
13.
Babikr
,
F.
,
Wan
,
J.
,
Xu
,
A.
,
Wu
,
Z.
,
Ahmed
,
S.
,
Freywald
,
A.
, and
Chibbar
,
R.
,
2021
, “
Distinct Roles but Cooperative Effect of TLR3/9 Agonists and PD-1 Blockade in Converting the Immunotolerant Microenvironment of Irreversible Electroporation-Ablated Tumors
,”
Cell. Mol. Immunol.
,
18
(
12
), pp.
2632
2647
.10.1038/s41423-021-00796-4
14.
Burbach
,
B. J.
,
O'Flanagan
,
S. D.
,
Shao
,
Q.
,
Young
,
K. M.
,
Slaughter
,
J. R.
,
Rollins
,
M. R.
, and
Street
,
T. J. L.
,
2021
, “
Irreversible Electroporation Augments Checkpoint Immunotherapy in Prostate Cancer and Promotes Tumor Antigen-Specific Tissue-Resident Memory CD8+ T Cells
,”
Nat. Commun.
,
12
(
1
), p.
3862
.10.1038/s41467-021-24132-6
15.
Zhao
,
J.
,
Wen
,
X.
,
Tian
,
L.
,
Li
,
T.
,
Xu
,
C.
,
Wen
,
X.
, and
Melancon
,
M. P.
,
2019
, “
Irreversible Electroporation Reverses Resistance to Immune Checkpoint Blockade in Pancreatic Cancer
,”
Nat. Commun.
,
10
(
1
), p.
899
.10.1038/s41467-019-08782-1
16.
Fang
,
Z.
,
Chen
,
L.
,
Moser
,
M. A.
,
Zhang
,
W.
,
Qin
,
Z.
, and
Zhang
,
B.
,
2021
, “
Electroporation-Based Therapy for Brain Tumors: A Review
,”
ASME J. Biomech. Eng.
,
143
(
10
), p.
100802
.10.1115/1.4051184
17.
Garcia
,
P. A.
,
Pancotto
,
T.
,
Rossmeisl
,
J. H.
,
Henao-Guerrero
,
N.
,
Gustafson
,
N. R.
,
Daniel
,
G. B.
,
Robertson
,
J. L.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2011
, “
Non-Thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractionated Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient
,”
Technol. Cancer Res. Treat.
,
10
(
1
), pp.
73
83
.10.7785/tcrt.2012.500181
18.
Rossmeisl
,
J. H.
,
Garcia
,
P. A.
,
Pancotto
,
T. E.
,
Robertson
,
J. L.
,
Henao-Guerrero
,
N.
,
Neal
,
R. E.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2015
, “
Safety and Feasibility of the NanoKnife System for Irreversible Electroporation Ablative Treatment of Canine Spontaneous Intracranial Gliomas
,”
J. Neurosurg.
,
123
(
4
), pp.
1008
1025
.10.3171/2014.12.JNS141768
19.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Neal
,
R. E.
,
Ellis
,
T. L.
,
Olson
,
J. D.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R. V.
,
2010
, “
Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis
,”
J. Membr. Biol.
,
236
(
1
), pp.
127
136
.10.1007/s00232-010-9284-z
20.
Ellis
,
T. L.
,
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R. V.
,
2011
, “
Nonthermal Irreversible Electroporation for Intracranial Surgical Applications. Laboratory Investigation
,”
J. Neurosurg.
,
114
(
3
), pp.
681
688
.10.3171/2010.5.JNS091448
21.
Brown
,
T. D.
,
Nowak
,
M.
,
Bayles
,
A. V.
,
Prabhakarpandian
,
B.
,
Karande
,
P.
,
Lahann
,
J.
,
Helgeson
,
M. E.
, and
Mitragotri
,
S.
,
2019
, “
A Microfluidic Model of Human Brain (muHuB) for Assessment of Blood Brain Barrier
,”
Bioeng. Transl. Med.
,
4
(
2
), p.
e10126
.10.1002/btm2.10126
22.
Abbott
,
N. J.
,
Patabendige
,
A. A.
,
Dolman
,
D. E.
,
Yusof
,
S. R.
, and
Begley
,
D. J.
,
2010
, “
Structure and Function of the Blood-Brain Barrier
,”
Neurobiol. Dis.
,
37
(
1
), pp.
13
25
.10.1016/j.nbd.2009.07.030
23.
Wilhelm
,
I.
,
Molnar
,
J.
,
Fazakas
,
C.
,
Hasko
,
J.
, and
Krizbai
,
I. A.
,
2013
, “
Role of the Blood-Brain Barrier in the Formation of Brain Metastases
,”
Int. J. Mol. Sci.
,
14
(
1
), pp.
1383
1411
.10.3390/ijms14011383
24.
Fu
,
B. M.
,
2012
, “
Experimental Methods and Transport Models for Drug Delivery Across the Blood-Brain Barrier
,”
Curr. Pharm. Biotechnol.
,
13
(
7
), pp.
1346
1359
.10.2174/138920112800624409
25.
Pardridge
,
W. M.
,
2003
, “
Blood-Brain Barrier Drug Targeting: The Future of Brain Drug Development
,”
Mol. Interventions
,
3
(
2
), pp.
90
105
.10.1124/mi.3.2.90
26.
Sano
,
M. B.
,
Arena
,
C. B.
,
DeWitt
,
M. R.
,
Saur
,
D.
, and
Davalos
,
R. V.
,
2014
, “
In-Vitro Bipolar Nano- and Microsecond Electro-Pulse Bursts for Irreversible Electroporation Therapies
,”
Bioelectrochemistry
,
100
, pp.
69
79
.10.1016/j.bioelechem.2014.07.010
27.
Ivey
,
J. W.
,
Wasson
,
E. M.
,
Alinezhadbalalami
,
N.
,
Kanitkar
,
A.
,
Debinski
,
W.
,
Sheng
,
Z.
,
Davalos
,
R. V.
, and
Verbridge
,
S. S.
,
2019
, “
Characterization of Ablation Thresholds for 3D-Cultured Patient-Derived Glioma Stem Cells in Response to High-Frequency Irreversible Electroporation
,”
Research
,
2019
, p.
8081315
.10.34133/2019/8081315
28.
Freeman
,
M. R.
, and
Rowitch
,
D. H.
,
2013
, “
Evolving Concepts of Gliogenesis: A Look Way Back and Ahead to the Next 25 Years
,”
Neuron
,
80
(
3
), pp.
613
623
.10.1016/j.neuron.2013.10.034
29.
Abbott
,
N. J.
,
Ronnback
,
L.
, and
Hansson
,
E.
,
2006
, “
Astrocyte-Endothelial Interactions at the Blood-Brain Barrier
,”
Nat. Rev. Neurosci.
,
7
(
1
), pp.
41
53
.10.1038/nrn1824
30.
Zhang
,
B.
,
Yang
,
Y.
,
Ding
,
L.
,
Moser
,
M.
,
Zhang
,
E. M.
, and
Zhang
,
W.
,
2019
, “
Tumor Ablation Enhancement by Combining Radiofrequency Ablation and Irreversible Electroporation: An In Vitro 3D Tumor Study
,”
Ann. Biomed. Eng.
,
47
(
3
), pp.
694
705
.10.1007/s10439-018-02185-x
31.
Fang
,
Z.
,
Mao
,
H.
,
Moser
,
M.
,
Zhang
,
W.
,
Qian
,
Z.
, and
Zhang
,
B.
,
2021
, “
Irreversible Electroporation Enhanced by Radiofrequency Ablation: An In Vitro and Computational Study in a 3D Liver Tumor Model
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2126
2138
.10.1007/s10439-021-02734-x
32.
Zhang
,
B.
,
Liu
,
F.
,
Fang
,
Z.
,
Ding
,
L.
,
Moser
,
M.
, and
Zhang
,
W.
,
2021
, “
An In Vivo Study of a Custom-Made High-Frequency Irreversible Electroporation Generator on Different Tissues for Clinically Relevant Ablation Zones
,”
Int. J. Hyperthermia
,
38
(
1
), pp.
593
603
.10.1080/02656736.2021.1912417
33.
Ivey
,
J. W.
,
Latouche
,
E. L.
,
Sano
,
M. B.
,
Rossmeisl
,
J. H.
,
Davalos
,
R. V.
, and
Verbridge
,
S. S.
,
2015
, “
Targeted Cellular Ablation Based on the Morphology of Malignant Cells
,”
Sci. Rep.
,
5
(
1
), p.
17157
.10.1038/srep17157
34.
Kotnik
,
T.
, and
Miklavcic
,
D.
,
2006
, “
Theoretical Evaluation of Voltage Inducement on Internal Membranes of Biological Cells Exposed to Electric Fields
,”
Biophys. J.
,
90
(
2
), pp.
480
491
.10.1529/biophysj.105.070771
35.
Mercadal
,
B.
,
Beitel-White
,
N.
,
Aycock
,
K. N.
,
Castellvi
,
Q.
,
Davalos
,
R. V.
, and
Ivorra
,
A.
,
2020
, “
Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments
,”
Ann. Biomed. Eng.
,
48
(
5
), pp.
1451
1462
.10.1007/s10439-020-02462-8
36.
Lv
,
Y.
,
Tang
,
X.
,
Peng
,
W.
,
Cheng
,
X.
,
Chen
,
S.
, and
Yao
,
C.
,
2020
, “
Analysis on Reversible/Irreversible Electroporation Region in Lung Adenocarcinoma Cell Model In Vitro With Electric Pulses Delivered by Needle Electrodes
,”
Phys. Med. Biol.
,
65
(
22
), p.
225001
.10.1088/1361-6560/abc12e
37.
Crowley
,
L. C.
,
Scott
,
A. P.
,
Marfell
,
B. J.
,
Boughaba
,
J. A.
,
Chojnowski
,
G.
, and
Waterhouse
,
N. J.
,
2016
, “
Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry
,”
Cold Spring Harbor Protoc.
,
2016
(
7
), pp.
647
651
.10.1101/pdb.prot087163
38.
Chu
,
K. F.
, and
Dupuy
,
D. E.
,
2014
, “
Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy
,”
Nat. Rev. Cancer
,
14
(
3
), pp.
199
208
.10.1038/nrc3672
39.
Nikfarjam
,
M.
,
Muralidharan
,
V.
, and
Christophi
,
C.
,
2005
, “
Mechanisms of Focal Heat Destruction of Liver Tumors
,”
J. Surg. Res.
,
127
(
2
), pp.
208
223
.10.1016/j.jss.2005.02.009
40.
Sano
,
M. B.
,
Fesmire
,
C. C.
, and
Petrella
,
R. A.
,
2021
, “
Electro-Thermal Therapy Algorithms and Active Internal Electrode Cooling Reduce Thermal Injury in High Frequency Pulsed Electric Field Cancer Therapies
,”
Ann. Biomed. Eng.
,
49
(
1
), pp.
191
202
.10.1007/s10439-020-02524-x
41.
O'Brien
,
T. J.
,
Bonakdar
,
M.
,
Bhonsle
,
S.
,
Neal
,
R. E.
,
Aardema
,
C. H.
,
Robertson
,
J. L.
,
Goldberg
,
S. N.
, and
Davalos
,
R. V.
,
2018
, “
Effects of Internal Electrode Cooling on Irreversible Electroporation Using a Perfused Organ Model
,”
Int. J. Hyperthermia
,
35
(
1
), pp.
44
55
.10.1080/02656736.2018.1473893
42.
Hawkins
,
B. T.
, and
Davis
,
T. P.
,
2005
, “
The Blood-Brain Barrier/Neurovascular Unit in Health and Disease
,”
Pharmacol. Rev.
,
57
(
2
), pp.
173
185
.10.1124/pr.57.2.4
43.
Golberg
,
A.
,
Bruinsma
,
B. G.
,
Uygun
,
B. E.
, and
Yarmush
,
M. L.
,
2015
, “
Tissue Heterogeneity in Structure and Conductivity Contribute to Cell Survival During Irreversible Electroporation Ablation by ‘Electric Field Sinks
’,”
Sci. Rep.
,
5
(
1
), p.
8485
.10.1038/srep08485
44.
Miklavčič
,
D.
,
Pavšelj
,
N.
, and
Hart
,
F.
,
2006
, “
Electric Properties of Tissues
,” John Wiley & Sons, Inc., New York.10.1002/9780471740360.ebs0403
45.
Gessner
,
U.
,
1961
, “
Effects of the Vessel Wall on Electromagnetic Flow Measurement
,”
Biophys. J.
,
1
(
8
), pp.
627
637
.10.1016/S0006-3495(61)86912-9
You do not currently have access to this content.