Abstract

Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea’s response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid–structure interfaces. The model’s middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate (SFP) displacements up to 28.5 μm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2 μm from a BOP input of 30.7 kPa. The cochlea’s spiral shape caused asymmetric pressure distributions as high as 4 kPa across the cochlea’s width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses toward a model able to predict potential hearing loss after blast.

References

1.
Dougherty
,
A. L.
,
MacGregor
,
A. J.
,
Han
,
P. P.
,
Viirre
,
E.
,
Heltemes
,
K. J.
, and
Galarneau
,
M. R.
,
2013
, “
Blast-Related Ear Injuries Among U.S. Military Personnel
,”
J. Rehabil. Res. Dev.
,
50
(
6
), pp.
893
904
.10.1682/JRRD.2012.02.0024
2.
Lloyd Soderlund
,
L.
,
McKenna
,
E. A.
,
Tastad
,
K.
, and
Paul
,
M.
,
2016
, “
Prevalence of Permanent Threshold Shifts in the United States Air Force Hearing Conservation Program by Career Field, 2005–2011
,”
J. Occup. Environ. Hyg.
,
13
(
5
), pp.
383
392
.10.1080/15459624.2015.1123814
3.
Tepe
,
V.
,
Smalt
,
C.
,
Nelson
,
J.
,
Quatieri
,
T.
, and
Pitts
,
K.
,
2017
, “
Hidden Hearing Injury: The Emerging Science and Military Relevance of Cochlear Synaptopathy
,”
Mil. Med.
,
182
(
9
), pp.
e1785
e1795
.10.7205/MILMED-D-17-00025
4.
Greene
,
N. T.
,
Alhussaini
,
M. A.
,
Easter
,
J. R.
,
Argo
,
T. F.
,
Walilko
,
T.
, and
Tollin
,
D. J.
,
2018
, “
Intracochlear Pressure Measurements During Acoustic Shock Wave Exposure
,”
Hear. Res.
,
365
, pp.
149
164
.10.1016/j.heares.2018.05.014
5.
Jiang
,
S.
,
Smith
,
K.
, and
Gan
,
R. Z.
,
2019
, “
Dual-Laser Measurement and Finite Element Modeling of Human Tympanic Membrane Motion Under Blast Exposure
,”
Hear. Res.
,
378
, pp.
43
52
.10.1016/j.heares.2018.12.003
6.
Jiang
,
S.
,
Dai
,
C.
, and
Gan
,
R. Z.
,
2021
, “
Dual-Laser Measurement of Human Stapes Footplate Motion Under Blast Exposure
,”
Hear. Res.
,
403
, p.
108177
.10.1016/j.heares.2021.108177
7.
Gan
,
R. Z.
,
Wood
,
M. W.
, and
Dormer
,
K. J.
,
2004
, “
Human Middle Ear Transfer Function Measured by Double Laser Interferometry System
,”
Otol. Neurotol.
,
25
(
4
), pp.
423
435
.10.1097/00129492-200407000-00005
8.
Brown
,
M. A.
,
Ji
,
X. D.
, and
Gan
,
R. Z.
,
2021
, “
3D Finite Element Modeling of Blast Wave Transmission From the External Ear to Cochlea
,”
Ann. Biomed. Eng.
,
49
(
2
), pp.
757
768
.10.1007/s10439-020-02612-y
9.
De Paolis
,
A.
,
Bikson
,
M.
,
Nelson
,
J. T.
,
de Ru
,
J. A.
,
Packer
,
M.
, and
Cardoso
,
L.
,
2017
, “
Analytical and Numerical Modeling of the Hearing System: Advances Towards the Assessment of Hearing Damage
,”
Hear. Res.
,
349
, pp.
111
128
.10.1016/j.heares.2017.01.015
10.
Price
,
G. R.
,
2007
, “
Validation of the Auditory Hazard Assessment Algorithm for the Human With Impulse Noise Data
,”
J. Acoust. Soc. Am.
,
122
(
5
), p.
2786
.10.1121/1.2785810
11.
Leckness
,
K.
,
Nakmali
,
D.
, and
Gan
,
R. Z.
,
2018
, “
Computational Modeling of Blast Wave Transmission Through Human Ear
,”
Mil. Med.
,
183
(
suppl_1
), pp.
262
268
.10.1093/milmed/usx226
12.
Ren
,
L.-J.
,
Hua
,
C.
,
Ding
,
G.-H.
,
Yang
,
L.
,
Dai
,
P.-D.
, and
Zhang
,
T.-Y.
,
2018
, “
Three-Dimensional Finite Element Hydrodynamical Modeling of Straight and Spiral Cochlea
,”
AIP Conf. Proc.
,
1965
, p.
030003
.10.1063/1.5038456
13.
Gan
,
R.
,
Zhang
,
X.
, and
Guan
,
X.
,
2011
, “
Modeling Analysis of Biomechanical Changes of Middle Ear Cochlea in Otitis Media
,”
AIP Conference Proceedings
,
AIP Publishing
,
Melville, NY
, pp.
539
544
.
14.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
,
2004
, “
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
,
32
(
6
), pp.
847
59
.10.1023/B:ABME.0000030260.22737.53
15.
Reichenbach
,
T.
, and
Hudspeth
,
A. J.
,
2014
, “
The Physics of Hearing: Fluid Mechanics and the Active Process of the Inner Ear
,”
Rep. Prog. Phys.
,
77
(
7
), p.
076601
.10.1088/0034-4885/77/7/076601
16.
Nuttall
,
A. L.
,
Dolan
,
D. F.
, and
Avinash
,
G.
,
1991
, “
Laser Doppler Velocimetry of Basilar Membrane Vibration
,”
Hear. Res.
,
51
(
2
), pp.
203
213
.10.1016/0378-5955(91)90037-A
17.
Manoussaki
,
D.
,
Chadwick
,
R. S.
,
Ketten
,
D. R.
,
Arruda
,
J.
,
Dimitriadis
,
E. K.
, and
O'Malley
,
J. T.
,
2008
, “
The Influence of Cochlear Shape on Low-Frequency Hearing
,”
Proc. Natl. Acad. Sci.
,
105
(
16
), pp.
6162
6166
.10.1073/pnas.0710037105
18.
Dewey
,
J. M.
,
1964
, “
The Air Velocity in Blast Waves From t.n.t. Explosions
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
279
(
1378
), pp.
366
385
.10.1098/rspa.1964.0110
You do not currently have access to this content.