Abstract

Ankle foot orthoses (AFOs) control the position and motion of the ankle, compensate for weakness, and correct deformities. AFOs can be classified as passive or powered. Powered AFOs overcome the limitations of passive AFOs by adapting their performance to meet a variety of requirements. However, the actuators currently used to power AFOs are typically heavy, bulky, expensive, or limited to laboratory settings. Thus, there is a strong need for lightweight, inexpensive, and flexible actuators for powering AFOs. In this technical brief, carbon fiber/silicone rubber (CF/SR) twisted and coiled artificial muscles (TCAMs) are proposed as novel actuators for powered AFOs. CF/SR TCAMs can lift to 12,600 times their weight with an input power of only 0.025 W cm−1 and are fabricated from inexpensive materials through a low-cost manufacturing process. Additionally, they can provide a specific work of 758 J kg−1 when an input voltage of 1.64 V cm−1 is applied. Mechanical characterization of CF/SR TCAMs in terms of length/tension, tension/velocity, and active-passive length/tension is presented, and results are compared with the performance of skeletal muscles. A gait analysis demonstrates that CF/SR TCAMs can provide the performance required to supplement lower limb musculature and replicate the gait cycle of a healthy subject. Therefore, the preliminary results provided in this brief are a stepping stone for a dynamic AFO powered by CF/SR TCAMs.

References

1.
Wei
,
T.-S.
,
Liu
,
P.-T.
,
Chang
,
L.-W.
, and
Liu
,
S.-Y.
,
2017
, “
Gait Asymmetry, Ankle Spasticity, and Depression as Independent Predictors of Falls in Ambulatory Stroke Patients
,”
PLoS One
,
12
(
5
), pp.
e0177136
e0177136
.10.1371/journal.pone.0177136
2.
Wilken
,
J. M.
,
Roy
,
C. W.
,
Shaffer
,
S. W.
,
Patzkowski
,
J. C.
,
Blanck
,
R. V.
,
Owens
,
J. G.
, and
Hsu
,
J. R.
,
2018
, “
Physical Performance Limitations After Severe Lower Extremity Trauma in Military Service Members
,”
J. Orthop. Trauma
,
32
(
4
), pp.
183
189
.10.1097/BOT.0000000000001103
3.
Potter
,
B. K.
,
Sheu
,
R. G.
,
Stinner
,
D.
,
Fergason
,
J.
,
Hsu
,
J. R.
,
Kuhn
,
K.
,
Owens
,
J. G.
,
Rivera
,
J.
,
Shawen
,
S. B.
,
Wilken
,
J. M.
,
DeSanto
,
J.
,
Huang
,
Y.
,
Scharfstein
,
D. O.
, and
MacKenzie
,
E. J.
,
2018
, “
Multisite Evaluation of a Custom Energy-Storing Carbon Fiber Orthosis for Patients With Residual Disability After Lower-Limb Trauma
,”
J. Bone Jt. Surg. Am.
,
100
(
20
), pp.
1781
1789
.10.2106/JBJS.18.00213
4.
Cornett
,
K. M.
,
Menezes
,
M. P.
,
Bray
,
P.
,
Halaki
,
M.
,
Shy
,
R. R.
,
Yum
,
S. W.
,
Estilow
,
T.
,
Moroni
,
I.
,
Foscan
,
M.
,
Pagliano
,
E.
,
Pareyson
,
D.
,
Laura
,
M.
,
Bhandari
,
T.
,
Muntoni
,
F.
,
Reilly
,
M. M.
,
Finkel
,
R. S.
,
Sowden
,
J.
,
Eichinger
,
K. J.
,
Herrmann
,
D. N.
,
Shy
,
M. E.
, and
Burns
,
J.
, for the
Inherited Neuropathies Consortium,
2016
, “
Phenotypic Variability of Childhood Charcot-Marie-Tooth Disease
,”
JAMA Neurol.
,
73
(
6
), pp.
645
651
.10.1001/jamaneurol.2016.0171
5.
Pogemiller
,
K.
,
Garibay
,
E.
,
Pierz
,
K.
,
Acsadi
,
G.
, and
Ounpuu
,
S.
,
2020
, “
Comparison of Gait Patterns and Functional Measures Between Charcot-Marie-Tooth Disease Type I and II in Children to Young Adults
,”
Gait Posture
,
77
, pp.
236
242
.10.1016/j.gaitpost.2020.01.027
6.
Fox
,
A. S.
,
Carty
,
C. P.
,
Modenese
,
L.
,
Barber
,
L. A.
, and
Lichtwark
,
G. A.
,
2018
, “
Simulating the Effect of Muscle Weakness and Contracture on Neuromuscular Control of Normal Gait in Children
,”
Gait Posture
,
61
, pp.
169
175
.10.1016/j.gaitpost.2018.01.010
7.
Ong
,
C. F.
,
Geijtenbeek
,
T.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2019
, “
Predicting Gait Adaptations Due to Ankle Plantarflexor Muscle Weakness and Contracture Using Physics-Based Musculoskeletal Simulations
,”
PLoS Comput. Biol.
,
15
(
10
), p.
e1006993
.10.1371/journal.pcbi.1006993
8.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.10.1016/S0021-9290(01)00105-1
9.
Huang
,
T. W.
,
Shorter
,
K. A.
,
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2015
, “
Mechanical and Energetic Consequences of Reduced Ankle Plantar-Flexion in Human Walking
,”
J. Exp. Biol.
,
218
(
Pt 22
), pp.
3541
3550
.
10.
Alam
,
M.
,
Choudhury
,
I. A.
, and
Bin Mamat
,
A.
,
2014
, “
Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop-Foot
,”
Sci. World J.
,
2014
, pp.
1
14
.10.1155/2014/867869
11.
Bae
,
D. Y.
,
Shin
,
J. H.
, and
Kim
,
J. S.
,
2019
, “
Effects of Dorsiflexor Functional Electrical Stimulation Compared to an Ankle/Foot Orthosis on Stroke-Related Genu Recurvatum Gait
,”
J. Phys. Ther. Sci.
,
31
(
11
), pp.
865
868
.10.1589/jpts.31.865
12.
Marsden
,
J.
,
Stevenson
,
V.
,
McFadden
,
C.
,
Swain
,
I.
, and
Taylor
,
P.
,
2013
, “
The Effects of Functional Electrical Stimulation on Walking in Hereditary and Spontaneous Spastic Paraparesis
,”
Neuromodulation
,
16
(
3
), pp.
256
260
(discussion 260).10.1111/j.1525-1403.2012.00494.x
13.
Yu
,
J.
,
Lee
,
S.
,
Kim
,
H.
,
Seo
,
D.
,
Hong
,
J.
, and
Lee
,
D.
,
2014
, “
The Effect of Transcutaneous Electrical Nerve Stimulation on Postural Sway on Fatigued Dorsi-Plantar Flexor
,”
Technol. Health Care
,
22
(
3
), pp.
395
402
.10.3233/THC-140796
14.
Nori
,
S. L.
, and
Stretanski
,
M. F.
,
2020
,
Foot Drop
,
StatPearls, StatPearls Publishing StatPearls Publishing LLC
,
Treasure Island, FL
.
15.
de Paula
,
G. V.
,
da Silva
,
T. R.
,
de Souza
,
J. T.
,
Luvizutto
,
G. J.
,
Bazan
,
S. G. Z.
,
Modolo
,
G. P.
,
Winckler
,
F. C.
,
de Oliveira Antunes
,
L. C.
,
Martin
,
L. C.
,
da Costa
,
R. D. M.
, and
Bazan
,
R.
,
2019
, “
Effect of Ankle-Foot Orthosis on Functional Mobility and Dynamic Balance of Patients After Stroke: Study Protocol for a Randomized Controlled Clinical Trial
,”
Medicine (Baltimore)
,
98
(
39
), p.
e17317
.10.1097/MD.0000000000017317
16.
Wright
,
E.
, and
DiBello
,
S. A.
,
2020
, “
Principles of Ankle-Foot Orthosis Prescription in Ambulatory Bilateral Cerebral Palsy
,”
Phys. Med. Rehabil. Clin. N. Am.
,
31
(
1
), pp.
69
89
.10.1016/j.pmr.2019.09.007
17.
Waterval
,
N. F. J.
,
Brehm
,
M. A.
,
Harlaar
,
J.
, and
Nollet
,
F.
,
2020
, “
Description of Orthotic Properties and Effect Evaluation of Ankle-Foot Orthoses in Non-Spastic Calf Muscle Weakness
,”
J. Rehabil. Med.
,
52
(
3
), pp. 1–11.10.2340/16501977-2642
18.
Chen
,
B.
,
Zi
,
B.
,
Zeng
,
Y.
,
Qin
,
L.
, and
Liao
,
W.-H.
,
2018
, “
Ankle-Foot Orthoses for Rehabilitation and Reducing Metabolic Cost of Walking: Possibilities and Challenges
,”
Mechatronics
,
53
, pp.
241
250
.10.1016/j.mechatronics.2018.06.014
19.
Russell Esposito
,
E.
,
Schmidtbauer
,
K. A.
, and
Wilken
,
J. M.
,
2018
, “
Experimental Comparisons of Passive and Powered Ankle-Foot Orthoses in Individuals With Limb Reconstruction
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
111
.10.1186/s12984-018-0455-y
20.
Ikeda
,
A. J.
,
Fergason
,
J. R.
, and
Wilken
,
J. M.
,
2018
, “
Effects of Altering Heel Wedge Properties on Gait With the Intrepid Dynamic Exoskeletal Orthosis
,”
Prosthet. Orthot. Int.
,
42
(
3
), pp.
265
274
.10.1177/0309364617728116
21.
Schmidtbauer
,
K. A.
,
Russell Esposito
,
E.
, and
Wilken
,
J. M.
,
2019
, “
Ankle-Foot Orthosis Alignment Affects Running Mechanics in Individuals With Lower Limb Injuries
,”
Prosthet. Orthot. Int.
,
43
(
3
), pp.
316
324
.10.1177/0309364619826386
22.
Russell Esposito
,
E.
,
Choi
,
H. S.
,
Owens
,
J. G.
,
Blanck
,
R. V.
, and
Wilken
,
J. M.
,
2015
, “
Biomechanical Response to Ankle-Foot Orthosis Stiffness During Running
,”
Clin. Biomech. (Bristol, Avon)
,
30
(
10
), pp.
1125
1132
.10.1016/j.clinbiomech.2015.08.014
23.
Lamuta
,
C.
,
Messelot
,
S.
, and
Tawfick
,
S.
,
2018
, “
Theory of the Tensile Actuation of Fiber Reinforced Coiled Muscles
,”
Smart Mater. Struct.
,
27
(
5
), p.
055018
.10.1088/1361-665X/aab52b
24.
Giovinco
,
V.
,
Kotak
,
P.
,
Cichella
,
V.
,
Maletta
,
C.
, and
Lamuta
,
C.
,
2020
, “
Dynamic Model for the Tensile Actuation of Thermally and Electro-Thermally Actuated Twisted and Coiled Artificial Muscles (TCAMs)
,”
Smart Mater. Struct.
,
29
(
2
), p.
025004
.10.1088/1361-665X/ab5e38
25.
Lamuta
,
C.
,
He
,
H.
,
Zhang
,
K.
,
Rogalski
,
M.
,
Sottos
,
N.
, and
Tawfick
,
S.
,
2019
, “
Digital Texture Voxels for Stretchable Morphing Skin Applications
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900260
.10.1002/admt.201900260
26.
Kotak
,
P.
,
Weerakkody
,
T.
, and
Caterina
,
L.
,
2021
, “
Physics-Based Dynamic Model for the Electro-Thermal Actuation of Bio-Inspired Twisted Spiral Artificial Muscles (TSAMs)
,”
Polymer
,
222
, p.
123642
.10.1016/j.polymer.2021.123642
27.
Rassier
,
D. E.
,
MacIntosh
,
B. R.
, and
Herzog
,
W.
,
1999
, “
Length Dependence of Active Force Production in Skeletal Muscle
,”
J. Appl. Physiol.
,
86
(
5
), pp.
1445
1457
.10.1152/jappl.1999.86.5.1445
28.
Wilkie
,
D. R.
,
1949
, “
The Relation Between Force and Velocity in Human Muscle
,”
J. Physiol.
,
110
(
3–4
), pp.
249
280
.10.1113/jphysiol.1949.sp004437
29.
Gajdosik
,
R. L.
,
2001
, “
Passive Extensibility of Skeletal Muscle: Review of the Literature With Clinical Implications
,”
Clin. Biomech.
,
16
(
2
), pp.
87
101
.10.1016/S0268-0033(00)00061-9
30.
Maganaris
,
C. N.
,
2001
, “
Force-Length Characteristics of In Vivo Human Skeletal Muscle
,”
Acta Physiol. Scand.
,
172
(
4
), pp.
279
285
.10.1046/j.1365-201x.2001.00799.x
31.
Hasson
,
C. J.
, and
Caldwell
,
G. E.
,
2012
, “
Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles
,”
Biomed. Eng. Soc.
,
40
(
5
), pp.
1088
1101
.10.1007/s10439-011-0481-4
32.
Rubenson
,
J.
,
Pires
,
N. J.
,
Loi
,
H. O.
,
Pinniger
,
G. J.
, and
Shannon
,
D. G.
,
2012
, “
On the Ascent: The Soleus Operating Length is Conserved to the Ascending Limb of the Force–Length Curve Across Gait Mechanics in Humans
,”
J. Exp. Biol.
,
215
(
20
), pp.
3539
3551
.
33.
Yamamoto
,
S.
,
Hagiwara
,
A.
,
Mizobe
,
T.
,
Yokoyama
,
O.
, and
Yasui
,
T.
,
2005
, “
Development of an Ankle-Foot Orthosis With an Oil Damper
,”
Prosthet. Orthot. Int.
,
29
(
3
), pp.
209
219
.10.1080/03093640500199455
34.
Yamamoto
,
S.
,
Ebina
,
M.
,
Kubo
,
S.
,
Hayashi
,
T.
,
Akita
,
Y.
, and
Hayakawa
,
Y.
,
1999
, “
Development of an Ankle-Foot Orthosis With Dorsiflexion Assist, Part 2: Structure and Evaluation
,”
JPO J. Prosthet. Orthot.
,
11
(
2
), pp.
24
28
.10.1097/00008526-199901120-00003
35.
Liu
,
M.
,
Sun
,
J.
, and
Chen
,
Q.
,
2009
, “
Influences of Heating Temperature on Mechanical Properties of Polydimethylsiloxane
,”
Sens. Actuators A: Phys.
,
151
(
1
), pp.
42
45
.10.1016/j.sna.2009.02.016
36.
Cavanagh
,
P. R.
, and
Komi
,
P. V.
,
1979
, “
Electromechanical Delay in Human Skeletal Muscle Under Concentric and Eccentric Contractions
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
42
(
3
), pp.
159
163
.10.1007/BF00431022
37.
Bell
,
D. G.
, and
Jacobs
,
I.
,
1986
, “
Electro-Mechanical Response Times and Rate of Force Development in Males and Females
,”
Med. Sci. Sports Exerc.
,
18
(
1
), pp.
31
36
.
38.
Sawicki
,
G.
,
Lewis
,
C.
, and
Ferris
,
D. P.
,
2009
, “
It Pays to Have a Spring in Your Step
,”
Exercise Sport Sci. Rev.
,
37
(
3
), pp.
130
138
.10.1097/JES.0b013e31819c2df6
39.
Esposito
,
E. R.
,
Blanck
,
R. V.
,
Harper
,
N. G.
,
Hsu
,
J.
, and
Wilken
,
J.
,
2014
, “
How Does Ankle-Foot Orthosis Stiffness Affect Gait in Patients With Lower Limb Salvage?
,”
Clinical Orthopaedics Relat. Res.
,
472
(
10
), pp.
3026
3035
.10.1007/s11999-014-3661-3
40.
GeePower Energy Technology Co., Limited
, 2021, “GeePower,” GeePower Energy Technology Co., Limited, Kowloon, Hongkong, accessed Aug. 9, 2021, https://battery-system.com/product/3-7v-8ah-polymer-lithium-pouch-cells
41.
Ferris
,
D. P.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
2005
, “
An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
(
2
), pp.
189
197
.10.1123/jab.21.2.189
42.
Blaya
,
J. A.
, and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.10.1109/TNSRE.2003.823266
43.
Chin
,
R.
,
Hsiao-Wecksler
,
E. T.
,
Loth
,
E.
,
Kogler
,
G.
,
Manwaring
,
S. D.
,
Tyson
,
S. N.
,
Shorter
,
K. A.
, and
Gilmer
,
J. N.
,
2009
, “
A Pneumatic Power Harvesting Ankle-Foot Orthosis to Prevent Foot-Drop
,”
J. NeuroEng. Rehabil.
,
6
(
1
), p.
19
.10.1186/1743-0003-6-19
44.
Lima
,
M. D.
,
Li
,
N.
,
Jung de Andrade
,
M.
,
Fang
,
S.
,
Oh
,
J.
,
Spinks
,
G. M.
,
Kozlov
,
M. E.
,
Haines
,
C. S.
,
Suh
,
D.
,
Foroughi
,
J.
,
Kim
,
S. J.
,
Chen
,
Y.
,
Ware
,
T.
,
Shin
,
M. K.
,
Machado
,
L. D.
,
Fonseca
,
A. F.
,
Madden
,
J. D. W.
,
Voit
,
W. E.
,
Galvao
,
D. S.
, and
Baughman
,
R. H.
,
2012
, “
Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles
,”
Science
,
338
(
6109
), pp.
928
932
.10.1126/science.1226762
You do not currently have access to this content.