Abstract

Lower limb injuries caused by under-foot impacts often appear in sport landing, automobile collision, and antivehicular landmine blasts. The purpose of this study was to evaluate a foot-ankle-leg model of the human active lower limb (HALL) model, and used it to investigate lower leg injury responses in different under-foot loading environments to provide a theoretical basis for the design of physical dummies adapted to multiple loading conditions. The model was first validated in allowable rotation loading conditions, like dorsiflexion, inversion/eversion, and external rotation. Then, its sensitivity to loading rates and initial postures was further verified through experimental data concerning both biomechanical stiffness and injury locations. Finally, the model was used to investigate the biomechanical responses of the foot-ankle-leg region in different under-foot loading conditions covering the loading rate from sport landing to blast impact. The results showed that from −15 deg plantarflexion to 30 deg dorsiflexion, the neutral posture always showed the largest tolerance, and more than 1.5 times tolerance gap was achieved between neutral posture and dorsiflexion 30 deg. Under-foot impacts from 2 m/s to 14 m/s, the peak tibia force increased at least 1.9 times in all postures. Thus, we consider that it is necessary to include initial posture and loading rate factors in the definition of the foot-ankle-leg injury tolerance for under-foot impact loading.

References

1.
Bates
,
N. A.
,
Ford
,
K. R.
,
Myer
,
G. D.
, and
Hewett
,
T. E.
,
2013
, “
Impact Differences in Ground Reaction Force and Center of Mass Between the First and Second Landing Phases of a Drop Vertical Jump and Their Implications for Injury Risk Assessment
,”
J. Biomech.
,
46
(
7
), pp.
1237
1241
.10.1016/j.jbiomech.2013.02.024
2.
Rowbotham
,
S. K.
,
Blau
,
S.
, and
Hislop-Jambrich
,
J.
,
2018
, “
The Skeletal Trauma Resulting From a Fatal B.A.S.E Jump: A Case Study Showing the Impact of Landing Feet-First Under Extreme Vertical Deceleration
,”
Forensic Sci. Int.
,
286
, pp.
E20
E27
.10.1016/j.forsciint.2018.02.020
3.
Young
,
K. W.
,
Kim
,
J.
,
Cho
,
J. H.
,
Kim
,
H. S.
,
Cho
,
H. K.
, and
Lee
,
K. T.
,
2015
, “
Paratrooper's Ankle Fracture: Posterior Malleolar Fracture
,”
Clinics Orthop. Surg.
,
7
(
1
), p.
15
.10.4055/cios.2015.7.1.15
4.
Read
,
K. M.
,
Kufera
,
J. A.
,
Dischinger
,
P. C.
,
Kerns
,
T. J.
,
Ho
,
S. M.
,
Burgess
,
A. R.
, and
Burch
,
C. A.
,
2004
, “
Life-Altering Outcomes After Lower Extremity Injury Sustained in Motor Vehicle Crashes
,”
J. Trauma: Injury, Infection, Crit. Care
,
4
(
57
), pp.
815
823
.10.1097/01.TA.0000136289.15303.44
5.
Pattimore
,
D.
,
Ward
,
E.
,
Thomas
,
P.
, and
Bradford
,
M.
,
1991
, “
The Nature and Cause of Lower Limb Injuries in Car Crashes
,”
SAE
Paper No. 912901.10.4271/912901
6.
Newell
,
N.
,
Salzar
,
R.
,
Bull
,
A. M. J.
, and
Masouros
,
S. D.
,
2016
, “
A Validated Numerical Model of a Lower Limb Surrogate to Investigate Injuries Caused by Under-Vehicle Explosions
,”
J. Biomech.
,
49
(
5
), pp.
710
717
.10.1016/j.jbiomech.2016.02.007
7.
Dong
,
L.
,
Zhu
,
F.
,
Jin
,
X.
,
Suresh
,
M.
,
Jiang
,
B.
,
Sevagan
,
G.
,
Cai
,
Y.
,
Li
,
G.
, and
Yang
,
K. H.
,
2013
, “
Blast Effect on the Lower Extremities and Its Mitigation: A Computational Study
,”
J. Mech. Behav. Biomed.
,
28
, pp.
111
124
.10.1016/j.jmbbm.2013.07.010
8.
McKay
,
B. J.
,
Wolfe
,
G. J.
, and
Bir
,
C.
,
2007
, “
The Development of an Injury Corridor to Assess Lower Extremity Injuries Resulting From Anti-Vehicular (AV) Landmines/Improvised Explosive Device (IED) Blasts in Military Vehicles
,”
ASME
Paper No. SBC2007-176666.10.1115/SBC2007-176666
9.
Morgan
,
R. M.
,
Eppinger
,
R. H.
, and
Hennessey
,
B. C.
,
1991
, “
Ankle Joint Injury Mechanism for Adults in Frontal Automotive Impact
,”
SAE
Paper No. 912902.10.4271/912902
10.
Tannous
,
R. E.
,
Bandok
,
F. A.
,
T
,
T. G.
, and
Eppinger
,
R. H.
,
1996
, “
A Three-Dimensional Finite Element Model of the Human Ankle: Development and Preliminary Application to Axial Impulsive Loading
,”
SAE
Paper No. 962427.10.4271/962427
11.
Shin
,
J.
,
Yue
,
N.
, and
Untaroiu
,
C. D.
,
2012
, “
A Finite Element Model of the Foot and Ankle for Automotive Impact Applications
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2519
2531
.10.1007/s10439-012-0607-3
12.
Mo
,
F.
,
Li
,
F.
,
Behr
,
M.
,
Xiao
,
Z.
,
Zhang
,
G.
, and
Du
,
X.
,
2018
, “
A Lower Limb-Pelvis Finite Element Model With 3D Active Muscles
,”
Ann. Biomed. Eng.
,
46
(
1
), pp.
86
96
.10.1007/s10439-017-1942-1
13.
Li
,
F.
,
Huang
,
W.
,
Wang
,
X.
,
Lv
,
X.
, and
Mo
,
F.
,
2020
, “
Effects of Active Muscle Forces on Driver's Lower-Limb Injuries Due to Emergency Brake in Various Frontal Impacts
,”
Proc. Inst. Mech. Eng., Part D J. Autom. Eng.
,
234
(
7
), pp.
2014
2024
.10.1177/0954407019870704
14.
Li
,
G.
,
Ma
,
H.
,
Guan
,
T.
, and
Gao
,
G.
,
2020
, “
Predicting Safer Vehicle Front-End Shapes for Pedestrian Lower Limb Protection Via a Numerical Optimization Framework
,”
Int. J. Auto. Tech.-Kor.
,
21
(
3
), pp.
749
756
.10.1007/s12239-020-0073-0
15.
Mo
,
F.
,
Li
,
J.
,
Yang
,
Z.
,
Zhou
,
S.
, and
Behr
,
M.
,
2019
, “
in vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling
,”
Ann. Biomed. Eng.
,
47
(
12
), pp.
2356
2371
.10.1007/s10439-019-02314-0
16.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.10.1115/1.429623
17.
Siegler
,
S.
,
Block
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Mechanical Characteristics of the Collateral Ligaments of the Human Ankle Joint
,”
Foot Ankle
,
8
(
5
), pp.
234
242
.10.1177/107110078800800502
18.
Mo
,
F.
,
Li
,
J.
,
Dan
,
M.
,
Liu
,
T.
, and
Behr
,
M.
,
2019
, “
Implementation of Controlling Strategy in a Biomechanical Lower Limb Model With Active Muscles for Coupling Multibody Dynamics and Finite Element Analysis
,”
J. Biomech.
,
91
, pp.
51
60
.10.1016/j.jbiomech.2019.05.001
19.
Mo
,
F.
,
Luo
,
D.
,
Tan
,
Z.
,
Shang
,
B.
,
Lv
,
X.
, and
Zhou
,
D.
,
2021
, “
A Human Active Lower Limb Model for Chinese Pedestrian Safety Evaluation
,”
J. Bionic Eng.
,
18
(
4
), pp.
872
815
.10.1007/s42235-021-0067-2
20.
Gallenberger
,
K.
,
Yoganandan
,
N.
, and
Pintar
,
F.
,
2013
, “
Biomechanics of Foot/Ankle Trauma With VariableEnergy Impacts
,”
Ann. Adv. Automot. Med.
,
57
, pp.
123
132
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861818/
21.
Rudd
,
R.
,
Crandall
,
J.
,
Millington
,
S.
,
Hurwitz
,
S.
, and
Hoglund
,
N.
,
2004
, “
Injury Tolerance and Response of the Ankle Joint in Dynamic Dorsiflexion
,”
Stapp Car Crash J.
,
48
, pp.
1
26
.10.4271/2004-22-0001
22.
Funk
,
J. R.
,
Srinivasan
,
S. C.
,
Crandall
,
J. R.
,
Khaewpong
,
N.
,
Eppinger
,
R. H.
,
Jaffredo
,
A. S.
,
Potier
,
P.
, and
Petit
,
P. Y.
,
2002
, “
The Effects of Axial Preload and Dorsiflexion on the Tolerance of the Ankle/Subtalar Joint to Dynamic Inversion and Eversion
,”
Stapp Car Crash J.
,
46
(
46
), pp.
245
265
.10.4271/2002-22-0013
23.
Wei
,
F.
,
Post
,
J. M.
,
Braman
,
J. E.
,
Meyer
,
E. G.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2012
, “
Eversion During External Rotation of the Human Cadaver Foot Produces High Ankle Sprains
,”
J. Orthop. Res.
,
30
(
9
), pp.
1423
1429
.10.1002/jor.22085
24.
Gehre
,
C.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,” International Technical Conference on the Enhanced Safety of Vehicles, Stuttgart, Germany, June 15–18, Paper No. 09-0407.
https://www-esv.nhtsa.dot.gov/Proceedings/21/09-0407.pdf
25.
Mok
,
K.
,
Fong
,
D. T.
,
Krosshaug
,
T.
,
Engebretsen
,
L.
,
Hung
,
A. S.
,
Yung
,
P. S.
, and
Chan
,
K.
,
2011
, “
Kinematics Analysis of Ankle Inversion Ligamentous Sprain Injuries in Sports
,”
Am. J. Sports Med.
,
39
(
7
), pp.
1548
1552
.10.1177/0363546511399384
26.
Zhang
,
S.
,
Derrick
,
T. R.
,
Evans
,
W.
, and
Yu
,
Y. J.
,
2008
, “
Shock and Impact Reduction in Moderate and Strenuous Landing Activities
,”
Sports Biomech.
7
(
2
), pp.
296
309
.10.1080/14763140701841936
27.
Crandall
,
J. R.
,
Kuppa
,
S. M.
,
Klopp
,
G. S.
,
Hall
,
G. W.
,
Pilkey
,
W. D.
, and
Hurwitz
,
S. R.
,
1998
, “
Injury Mechanisms and Criteria for the Human Foot and Ankle Under Axial Impacts to the Foot
,”
Int. J. Crashworthines
,
3
(
2
), pp.
147
162
.10.1533/cras.1998.0068
28.
Mo
,
F.
,
Jiang
,
X.
,
Duan
,
S.
,
Xiao
,
Z.
,
Xiao
,
S.
, and
Shi
,
W.
,
2017
, “
Parametric Analysis of Occupant Ankle and Tibia Injuries in Frontal Impact
,”
PLoS One
,
12
(
9
),
e184521
.10.1371/journal.pone.0184521
29.
Mertz
,
H.
,
1993
, “
Anthropomorphic Test Devices
,”
Accidental Injury: Biomechanics and Prevention
,
A. M.
Nahum
, and
J. W.
Melvin
, eds.,
Springer-Verlag
,
New York
, pp.
72
88
.
30.
Kuppa
,
S.
,
Wang
,
J.
,
Haffner
,
M.
, and
Eppinger
,
R.
,
2001
, “
Lower Extremity Injuries and Associated Injury Criteria
,”
Proceedings of 17th ESV Conference
, Vol.
457
, Amsterdam, The Netherlands, June 4–7, pp.
1
15
.http://www-nrd.nhtsa.dot.gov/pdf/esv/esv17/proceed/00160.pdf
31.
Parenteau
,
C. S.
,
Viano
,
D. C.
, and
Petit
,
P. Y.
,
1998
, “
Biomechanical Properties of Human Cadaveric Ankle-Subtalar Joints in Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
105
111
.10.1115/1.2834289
32.
Mo
,
F.
,
Arnoux
,
P. J.
,
Jure
,
J. J.
, and
Masson
,
C.
,
2012
, “
Injury Tolerance of Tibia for the Car-Pedestrian Impact
,”
Acc. Anal. Prev.
,
46
, pp.
18
25
.10.1016/j.aap.2011.12.003
33.
Kerrigan
,
J. R.
,
Drinkwater
,
D. C.
,
Kam
,
C. Y.
,
Murphy
,
D. B.
,
Ivarsson
,
B. J.
,
Crandall
,
J. R.
, and
Patrie
,
J.
,
2004
, “
Tolerance of the Human Leg and Thigh in Dynamic Latero-Medial Bending
,”
Int. Crashworthiness
,
9
(
6
), pp.
607
623
.10.1533/ijcr.2004.0315
34.
Quenneville
,
C. E.
,
McLachlin
,
S. D.
,
Greeley
,
G. S.
, and
Dunning
,
C. E.
,
2011
, “
Injury Tolerance Criteria for Short-Duration Axial Impulse Loading of the Isolated Tibia
,”
J. Trauma Injury, Infection, Crit. Care
,
70
(
1
), pp.
E13
E18
.10.1097/TA.0b013e3181f6bb0e
35.
Chakravarty
,
A. B.
,
Martinez
,
A. A.
, and
Quenneville
,
C. E.
,
2017
, “
The Injury Tolerance of the Tibia Under Off-Axis Impact Loading
,”
Ann. Biomed. Eng.
,
45
(
6
), pp.
1534
1542
.10.1007/s10439-017-1824-6
36.
Liu
,
S.
,
Beillas
,
P.
,
Ding
,
L.
, and
Wang
,
X.
,
2020
, “
Morphing an Existing Open Source Human Body Model Into a Personalized Model for Seating Discomfort Investigation
,”
SAE
Paper No. 2020-01-0874.10.4271/2020-01-0874
37.
Hu
,
J.
,
Zhang
,
K.
,
Reed
,
M. P.
,
Wang
,
J.-T.
,
Neal
,
M.
, and
Lin
,
C.-H.
,
2019
, “
Frontal Crash Simulations Using Parametric Human Models Representing a Diverse Population
,”
Traffic Injury Prev.
,
20
(
sup1
), pp.
S97
S105
.10.1080/15389588.2019.1581926
38.
Smolen
,
C.
, and
Quenneville
,
C. E.
,
2017
, “
A Finite Element Model of the Foot/Ankle to Evaluate Injury Risk in Various Postures
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1993
2008
.10.1007/s10439-017-1844-2
39.
Yoganandan
,
N. A.
,
Pintar
,
F. A.
,
Boynton
,
M.
,
Begeman
,
P.
,
Prasad
,
P.
, and
Kuppa
,
S.
,
1996
, “
Dynamic Axial Tolerance of the Human Foot-Ankle Complex
,”
Soc. Auto
,
962426
, pp.
207
218
.10.4271/962426
40.
Funk
,
J. R.
,
Crandall
,
J. R.
,
Tourret
,
L. J.
,
MacMahon
,
C. B.
,
Bass
,
C. R.
,
Patrie
,
J. T.
,
Khaewpong
,
N.
, and
Eppinger
,
R. H.
,
2002
, “
The Axial Injury Tolerance of the Human Foot/Ankle Complex and the Effect of Achilles Tension
,”
ASME J. Biomech. Eng.
,
124
(
6
), pp.
750
757
.10.1115/1.1514675
You do not currently have access to this content.