Abstract

The stress experienced by the tibia has contributions from the forces and moments acting on the tibia. We sought to quantify the influence of running grade on internal tibial forces and moments. Seventeen participants ran at 3.33 m/s on an instrumented treadmill at 0 deg, ±5 deg, and ±10 deg while motion data were captured. Ankle joint contact force was estimated from an anthropometrically-scaled musculoskeletal model using inverse dynamics-based static optimization. Internal tibial forces and moments were quantified at the distal 1/3rd of the tibia, by ensuring static equilibrium with all applied forces and moments. Downhill running conditions resulted in lower peak internal axial force (range of mean differences: −9% to −16%, p < 0.001), lower peak internal anteroposterior force (−14% to −21%, p < 0.001), and lower peak internal mediolateral force (−14% to −15%, p < 0.001), compared to 0 deg and +5 deg. Furthermore, downhill conditions resulted in lower peak internal mediolateral moment (−11%to −21%, p < 0.001), lower peak internal anteroposterior moment (−13% to −14%, p < 0.001), and lower peak internal torsional moment (−9% to −21%, p < 0.001), compared to 0 deg, +5 deg, and +10 deg. The +10 deg condition resulted in lower peak internal axial force (−7% to −9%, p < 0.001) and lower peak internal mediolateral force (−9%, p = 0.004), compared to 0 deg and +5 deg. These findings suggest that downhill running may be associated with lower tibial stresses than either level or uphill running.

References

1.
Wentz
,
L.
,
Liu
,
P.-Y.
,
Haymes
,
E.
, and
Ilich
,
J. Z.
,
2011
, “
Females Have a Greater Incidence of Stress Fractures Than Males in Both Military and Athletic Populations: A Systemic Review
,”
Mil. Med.
,
176
(
4
), pp.
420
430
.10.7205/MILMED-D-10-00322
2.
Bennell
,
K. L.
,
Malcolm
,
S. A.
,
Thomas
,
S. A.
,
Wark
,
J. D.
, and
Brukner
,
P. D.
,
1996
, “
The Incidence and Distribution of Stress Fractures in Competitive Track and Field Athletes
,”
Am. J. Sports Med.
,
24
(
2
), pp.
211
217
.10.1177/036354659602400217
3.
Jones
,
B. H.
,
Bovee
,
M. W.
,
Harris
,
J. M.
, and
Cowan
,
D. N.
,
1993
, “
Intrinsic Risk Factors for Exercise-Related Injuries Among Male and Female Army Trainees
,”
Am. J. Sports Med.
,
21
(
5
), pp.
705
710
.10.1177/036354659302100512
4.
Taunton
,
J. E.
,
Clement
,
D. B.
, and
Webber
,
D.
,
1981
, “
Lower Extremity Stress Fractures in Athletes
,”
Phys. Sportsmed.
,
9
(
1
), pp.
77
86
.10.1080/00913847.1981.11710990
5.
Goldberg
,
B.
, and
Pecora
,
C.
,
1994
, “
Stress Fractures
,”
Phys. Sportsmed.
,
22
(
3
), pp.
68
78
.10.1080/00913847.1994.11710482
6.
Armstrong
,
D. W.
,
Rue
,
J.-P. H.
,
Wilckens
,
J. H.
, and
Frassica
,
F. J.
,
2004
, “
Stress Fracture Injury in Young Military Men and Women
,”
Bone
,
35
(
3
), pp.
806
816
.10.1016/j.bone.2004.05.014
7.
Finestone
,
A. S.
, and
Milgrom
,
C.
,
2012
, “
Diagnosis and Treatment of Stress Fractures
,”
Sport. Inj
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
775
785
.
8.
Dobrindt
,
O.
,
Hoffmeyer
,
B.
,
Ruf
,
J.
,
Seidensticker
,
M.
,
Steffen
,
I. G.
,
Fischbach
,
F.
,
Zarva
,
A.
,
Wieners
,
G.
,
Ulrich
,
G.
,
Lohmann
,
C. H.
, and
Amthauer
,
H.
,
2012
, “
Estimation of Return-to-Sports-Time for Athletes With Stress Fracture – an Approach Combining Risk Level of Fracture Site With Severity Based on Imaging
,”
BMC Musculoskelet. Disord
,
13
, p.
139
.10.1186/1471-2474-13-139
9.
Tenforde
,
A. S.
,
Sayres
,
L. C.
,
Mccurdy
,
M. L.
,
Sainani
,
K. L.
, and
Fredericson
,
M.
,
2013
, “
Identifying Sex-Specific Risk Factors for Stress Fractures in Adolescent Runners
,”
Med. Sci. Sport. Exerc.
,
45
(
10
), pp.
1843
1851
.10.1249/MSS.0b013e3182963d75
10.
Kelsey
,
J. L.
,
Bachrach
,
L. K.
,
Procter-Gray
,
E.
,
Nieves
,
J. E. R. I.
,
Greendale
,
G. A.
,
Sowers
,
M.
,
Brown
,
B. W.
,
Matheson
,
K. A.
,
Crawford
,
S. L.
, and
Cobb
,
K. L.
,
2007
, “
Risk Factors for Stress Fracture Among Young Female Cross-Country Runners
,”
Med. Sci. Sport. Exerc.
,
39
(
9
), pp.
1457
1463
.10.1249/mss.0b013e318074e54b
11.
Edwards
,
W. B.
,
2018
, “
Modeling Overuse Injuries in Sport as a Mechanical Fatigue Phenomenon
,”
Exerc. Sport Sci. Rev.
, 46(4), pp.
224
231
.
12.
Hughes
,
J. M.
,
Castellani
,
C. M.
,
Popp
,
K. L.
,
Guerriere
,
K. I.
,
Matheny
,
R. W.
,
Nindl
,
B. C.
, and
Bouxsein
,
M. L.
,
2020
, “
The Central Role of Osteocytes in the Four Adaptive Pathways of Bone's Mechanostat
,”
Exerc. Sport Sci. Rev.
,
48
(
3
), pp.
140
148
.10.1249/JES.0000000000000225
13.
Burr
,
D. B.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Radin
,
E. L.
,
1985
, “
Bone Remodeling in Response to In Vivo Fatigue Microdamage
,”
J. Biomech.
,
18
(
3
), pp.
189
200
.10.1016/0021-9290(85)90204-0
14.
Burr
,
D. B.
,
Milgrom
,
C.
,
Boyd
,
R. D.
,
Higgins
,
W. L.
,
Robin
,
G.
, and
Radin
,
E. L.
,
1990
, “
Experimental Stress Fractures of the Tibia. Biological and Mechanical Aetiology in Rabbits
,”
J. Bone Jt. Surg. Br.
,
72-B
(
3
), pp.
370
375
.10.1302/0301-620X.72B3.2341429
15.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
,
1996
, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.10.1016/0021-9290(94)00156-1
16.
Zioupos
,
P.
,
Wang
,
X.
, and
Currey
,
J.
,
1996
, “
The Accumulation of Fatigue Microdamage in Human Cortical Bone of Two Different Ages In Vitro
,”
Clin. Biomech.
,
11
(
7
), pp.
365
375
.10.1016/0268-0033(96)00010-1
17.
Derrick
,
T. R.
,
Edwards
,
W. B.
,
Fellin
,
R. E.
, and
Seay
,
J. F.
,
2016
, “
An Integrative Modeling Approach for the Efficient Estimation of Cross Sectional Tibial Stresses During Locomotion
,”
J. Biomech.
,
49
(
3
), pp.
429
435
.10.1016/j.jbiomech.2016.01.003
18.
Edwards
,
W. B.
,
Taylor
,
D.
,
Rudolphi
,
T. J.
,
Gillette
,
J. C.
, and
Derrick
,
T. R.
,
2010
, “
Effects of Running Speed on a Probabilistic Stress Fracture Model
,”
Clin. Biomech.
,
25
(
4
), pp.
372
377
.10.1016/j.clinbiomech.2010.01.001
19.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
(
5
), pp.
405
410
.10.1016/8756-3282(96)00028-2
20.
Edwards
,
W. B.
,
Taylor
,
D.
,
Rudolphi
,
T. J.
,
Gillette
,
J. C.
, and
Derrick
,
T. R.
,
2009
, “
Effects of Stride Length and Running Mileage on a Probabilistic Stress Fracture Model
,”
Med. Sci. Sport. Exerc.
,
41
(
12
), pp.
2177
2184
.10.1249/MSS.0b013e3181a984c4
21.
Meardon
,
S. A.
, and
Derrick
,
T. R.
,
2014
, “
Effect of Step Width Manipulation on Tibial Stress During Running
,”
J. Biomech.
,
47
(
11
), pp.
2738
2744
.10.1016/j.jbiomech.2014.04.047
22.
Rice
,
H.
,
Weir
,
G.
,
Trudeau
,
M. B.
,
Meardon
,
S. A.
,
Derrick
,
T. R.
, and
Hamill
,
J.
,
2019
, “
Estimating Tibial Stress Throughout the Duration of a Treadmill Run
,”
Med. Sci. Sport. Exerc.
,
51
(
11
), pp.
2257
2264
.10.1249/MSS.0000000000002039
23.
Milgrom
,
C.
,
Radeva-Petrova
,
D. R.
,
Finestone
,
A.
,
Nyska
,
M.
,
Mendelson
,
S.
,
Benjuya
,
N.
,
Simkin
,
A.
, and
Burr
,
D.
,
2007
, “
The Effect of Muscle Fatigue on In Vivo Tibial Strains
,”
J. Biomech.
,
40
(
4
), pp.
845
850
.10.1016/j.jbiomech.2006.03.006
24.
Milgrom
,
C.
,
Finestone
,
A. S.
, and
Voloshin
,
A.
,
2020
, “
Differences in the Principal Strain Angles During Activities Performed on Natural Hilly Terrain Versus Engineered Surfaces
,”
Clin. Biomech.
,
80
, p.
105146
.10.1016/j.clinbiomech.2020.105146
25.
Vernillo
,
G.
,
Giandolini
,
M.
,
Edwards
,
W. B.
,
Morin
,
J.-B.
,
Samozino
,
P.
,
Horvais
,
N.
, and
Millet
,
G. Y.
,
2017
, “
Biomechanics and Physiology of Uphill and Downhill Running
,”
Sport. Med.
,
47
(
4
), pp.
615
629
.10.1007/s40279-016-0605-y
26.
Khassetarash
,
A.
,
Vernillo
,
G.
,
Martinez
,
A.
,
Baggaley
,
M.
,
Giandolini
,
M.
,
Horvais
,
N.
,
Millet
,
G. Y.
, and
Edwards
,
W. B.
,
2020
, “
Biomechanics of Graded Running: Part II—Joint Kinematics and Kinetics, Scand
,”
J. Med. Sci. Sports
,
30
(
9
), pp.
1642
1654
.10.1111/sms.13735
27.
Milgrom
,
C.
,
Zloczower
,
E.
,
Fleischmann
,
C.
,
Spitzer
,
E.
,
Landau
,
R.
,
Bader
,
T.
, and
Finestone
,
A. S.
,
2021
, “
Medial Tibial Stress Fracture Diagnosis and Treatment Guidelines
,”
J. Sci. Med. Sport
,
24
(
6
), pp.
526
530
.10.1016/j.jsams.2020.11.015
28.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O'Connor
,
J. C.
,
1999
,
Dynamics of Human Gait
, 2nd ed,
Kihobo Publishers
, Cape Town, South Africa.
29.
Hermens
,
H. J.
,
Freriks
,
B.
,
Disselhorst-Klug
,
C.
, and
Rau
,
G.
,
2000
, “
Development of Recommendations for SEMG Sensors and Sensor Placement Procedures
,”
J. Electromyogr. Kinesiol.
,
10
(
5
), pp.
361
374
.10.1016/S1050-6411(00)00027-4
30.
Edwards
,
W. B.
,
Troy
,
K. L.
, and
Derrick
,
T. R.
,
2011
, “
On the Filtering of Intersegmental Loads During Running
,”
Gait Posture
,
34
(
3
), pp.
435
438
.10.1016/j.gaitpost.2011.06.006
31.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
32.
Glitsch
,
U.
, and
Baumann
,
W.
,
1997
, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
,
30
(
11–12
), pp.
1123
1131
.10.1016/S0021-9290(97)00089-4
33.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.10.1016/0021-9290(81)90035-X
34.
Rooney
,
B. D.
, and
Derrick
,
T. R.
,
2013
, “
Joint Contact Loading in Forefoot and Rearfoot Strike Patterns During Running
,”
J. Biomech.
,
46
(
13
), pp.
2201
2206
.10.1016/j.jbiomech.2013.06.022
35.
Vernillo
,
G.
,
Martinez
,
A.
,
Baggaley
,
M.
,
Khassetarash
,
A.
,
Giandolini
,
M.
,
Horvais
,
N.
,
Edwards
,
W. B.
, and
Millet
,
G. Y.
,
2020
, “
Biomechanics of Graded Running: Part I ‐ Stride Parameters, External Forces, Muscle Activations
,”
Scand J. Med. Sci. Sports
,
30
(
9
), pp.
1632
1641
.10.1111/sms.13708
36.
Merletti
,
R.
, and
Torino
,
P. D.
,
1999
, “
Standards for Reporting EMG Data
,”
J. Electromyogr. Kinesiol.
,
9
(
1
), pp.
3
4
.
37.
Zargham
,
A.
,
Afschrift
,
M.
,
De Schutter
,
J.
,
Jonkers
,
I.
, and
De Groote
,
F.
,
2019
, “
Inverse Dynamic Estimates of Muscle Recruitment and Joint Contact Forces Are More Realistic When Minimizing Muscle Activity Rather Than Metabolic Energy or Contact Forces
,”
Gait Posture
, 74,pp.
223
230
.
38.
Bates
,
D.
,
Mächler
,
M.
,
Bolker
,
B.
, and
Walker
,
S.
,
2014
, “
Fitting Linear Mixed-Effects Models Using lme4
,” ArXiv Prepr. ArXiv1406.5823.
39.
Kuznetsova
,
A.
,
Brockhoff
,
P. B.
, and
Christensen
,
R. H. B.
,
2017
, “
lmerTest Package: Tests in Linear Mixed Effects Models
,”
J. Stat. Software
,
82
(
13
), pp.
1
26
.
40.
Bartoń
,
K.
,
2019
, MuMIn”: Multi-Model Inference, R Package Version 1.43. 6. 2019.
41.
Russell
,
L.
,
2018
, emmeans: Estimated marginal means, aka Least-Squares Means. R package version 1.3.0.
42.
Portney, L. G., and Watkins, M. P., 2009, Foundations of Clinical Research: Applications to Practice, 3rd ed., Pearson/Prentice Hall, Upper Saddle River, NJ.
43.
Rugg
,
S. G.
,
Gregor
,
R. J.
,
Mandelbaum
,
B. R.
, and
Chiu
,
L.
,
1990
, “
In Vivo Moment Arm Calculations at the Ankle Using Magnetic Resonance Imaging (MRI)
,”
J. Biomech.
,
23
(
5
), pp.
495
501
.10.1016/0021-9290(90)90305-M
44.
Spoor
,
C. W.
,
van Leeuwen
,
J. L.
,
Meskers
,
C. G. M.
,
Titulaer
,
A. F.
, and
Huson
,
A.
,
1990
, “
Estimation of Instantaneous Moment Arms of Lower-Leg Muscles
,”
J. Biomech.
,
23
(
12
), pp.
1247
1259
.10.1016/0021-9290(90)90382-D
45.
Hunter
,
J. G.
,
Garcia
,
G. L.
,
Shim
,
J. K.
, and
Miller
,
R. H.
,
2019
, “
Fast Running Does Not Contribute More to Cumulative Load Than Slow Running
,”
Med. Sci. Sport. Exerc.
,
51
(
6
), pp.
1178
1185
.10.1249/MSS.0000000000001888
46.
Matijevich
,
E. S.
,
Branscombe
,
L. M.
,
Scott
,
L. R.
, and
Zelik
,
K. E.
,
2019
, “
Ground Reaction Force Metrics Are Not Strongly Correlated With Tibial Bone Load When Running Across Speeds and Slopes: Implications for Science, Sport and Wearable Tech
,”
PLoS One
,
14
(
1
), p.
e0210000
.10.1371/journal.pone.0210000
47.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
,
1981
, “
Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range
,”
Acta Orthop. Scand.
,
52
(
5
), pp.
481
490
.10.3109/17453678108992136
48.
Caler
,
W. E.
, and
Carter
,
D. R.
,
1989
, “
Bone Creep-Fatigue Damage Accumulation
,”
J. Biomech.
,
22
(
6–7
), pp.
625
635
.10.1016/0021-9290(89)90013-4
49.
Loundagin
,
L. L.
,
Schmidt
,
T. A.
, and
Edwards
,
W. B.
,
2018
, “
Mechanical Fatigue of Bovine Cortical Bone Using Ground Reaction Force Waveforms in Running
,”
ASME J. Biomech. Eng.
,
140
(
3
), pp.
1
5
.
50.
Pohl
,
M. B.
,
Mullineaux
,
D. R.
,
Milner
,
C. E.
,
Hamill
,
J.
, and
Davis
,
I. S.
,
2008
, “
Biomechanical Predictors of Retrospective Tibial Stress Fractures in Runners
,”
J. Biomech.
,
41
(
6
), pp.
1160
1165
.10.1016/j.jbiomech.2008.02.001
51.
Milner
,
C. E.
,
Ferber
,
R.
,
Pollard
,
C. D.
,
Hamill
,
J.
, and
Davis
,
I. S.
,
2006
, “
Biomechanical Factors Associated With Tibial Stress Fracture in Female Runners
,”
Med. Sci. Sport. Exerc.
,
38
(
2
), pp.
323
328
.10.1249/01.mss.0000183477.75808.92
52.
Davis
,
I.
,
Milner
,
C. E.
, and
Hamill
,
J.
,
2004
, “
Does Increased Loading During Running Lead to Tibial Stress Fractures? A Prospective Study
,”
Med. Sci. Sport. Exerc.
,
36
(
5
), p. S58.
53.
Johnson
,
C. D.
,
Tenforde
,
A. S.
,
Outerleys
,
J.
,
Reilly
,
J.
, and
Davis
,
I. S.
,
2020
, “
Impact-Related Ground Reaction Forces Are More Strongly Associated With Some Running Injuries Than Others
,”
Am. J. Sports Med.
,
48
(
12
), pp.
3072
3080
.10.1177/0363546520950731
54.
Zifchock
,
R. A.
,
Davis
,
I.
, and
Hamill
,
J.
,
2006
, “
Kinetic Asymmetry in Female Runners With and Without Retrospective Tibial Stress Fractures
,”
J. Biomech.
,
39
(
15
), pp.
2792
2797
.10.1016/j.jbiomech.2005.10.003
55.
Zioupos
,
P.
,
Currey
,
J. D.
, and
Casinos
,
A.
,
2001
, “
Tensile Fatigue in Bone: Are Cycles-, or Time to Failure, or Both, Important?
,”
J. Theor. Biol.
,
210
(
3
), pp.
389
399
.10.1006/jtbi.2001.2316
56.
Yang
,
P.-F.
,
Sanno
,
M.
,
Ganse
,
B.
,
Koy
,
T.
,
Brüggemann
,
G.-P.
,
Müller
,
L. P.
, and
Rittweger
,
J.
,
2014
, “
Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes During Walking and Running
,”
PLoS One
,
9
(
4
), p.
e94525
.10.1371/journal.pone.0094525
57.
Haider
,
I. T.
,
Baggaley
,
M.
, and
Edwards
,
W. B.
,
2020
, “
Subject-Specific Finite Element Models of the Tibia With Realistic Boundary Conditions Predict Bending Deformations Consistent With In Vivo Measurement
,” ASME
J. Biomech. Eng.
,
142
(
2
), p. 021010.
58.
L.
,
Modenese
, ·
Andrew
,
T. M.
, and
Phillips
,
2012
, “
Prediction of Hip Contact Forces and Muscle Activations During Walking at different speeds
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
157
168
.10.1007/s11044-011-9274-7
59.
Townshend
,
A. D.
,
Worringham
,
C. J.
, and
Stewart
,
I. B.
,
2010
, “
Spontaneous Pacing During Overground Hill Running
,”
Med. Sci. Sport. Exerc.
,
42
(
1
), pp.
160
169
.10.1249/MSS.0b013e3181af21e2
60.
Franklyn
,
M.
,
Oakes
,
B.
,
Field
,
B.
,
Wells
,
P.
, and
Morgan
,
D.
,
2008
, “
Section Modulus is the Optimum Geometric Predictor for Stress Fractures and Medial Tibial Stress Syndrome in Both Male and Female Athletes
,”
Am. J. Sports Med.
,
36
(
6
), pp.
1179
1189
.10.1177/0363546508314408
61.
Popp
,
K. L.
,
Hughes
,
J. M.
,
Smock
,
A. J.
,
Novotny
,
S. A.
,
Stovitz
,
S. D.
,
Koehler
,
S. M.
, and
Petit
,
M. A.
,
2009
, “
Bone Geometry, Strength, and Muscle Size in Runners With a History of Stress Fracture
,”
Med. Sci. Sports Exerc.
,
41
(
12
), pp.
2145
2150
.10.1249/MSS.0b013e3181a9e772
62.
Schnackenburg
,
K. E.
,
Macdonald
,
H. M.
,
Ferber
,
R.
,
Wiley
,
J. P.
, and
Boyd
,
S. K.
,
2011
, “
Bone Quality and Muscle Strength in Female Athletes With Lower Limb Stress Fractures
,”
Med. Sci. Sports Exerc.
,
43
(
11
), pp.
2110
9
.10.1249/MSS.0b013e31821f8634
You do not currently have access to this content.