Abstract

Aseptic loosening is the most common reason for the long-term revision of cemented arthroplasties with fracture of the cement being a postulated cause or contributing factor. In our previous studies we showed that adding an antibiotic to a polymethylmethacrylate (PMMA) bone cement led to detrimental effects on various mechanical properties of the cement such as bending strength, compressive strength and fracture toughness (KIC). This finding implied that the mechanical failure of antibiotic-loaded PMMA bone cement was influenced by its pore volume fraction. Up to now this aspect has not been studied. Hence the purposes of this study were to determine (1) the influence of antibiotic (telavancin) loading on the KIC of a widely used PMMA bone cement brand (Palacos®R) and (2) the influence of pore size and pore distribution on the fracture behavior of the KIC specimens. For (2) both experimental and numerical methods (extended finite element method [XFEM]) were used allowing a comparison between the two sets of results. We found that: (1) KIC decreased with increased porosity with the drop (relative to the value for the control cement) being significant when the telavancin loading was 4.8 wt/wt % (2 g of telavancin added to 40 g of control cement powder); (2) there was a critical pore size above which there was a significant decrease in KIC and is 1 mm; (3) crack propagation was strongly influenced by pore size and pore locations (pore–pore interactions); and, (4) there was good agreement between the experimental and XFEM results. The implications of these findings for the use of a telavancin-loaded PMMA bone cement in cemented total joint arthroplasties are commented upon.

References

1.
Lewis
,
G.
,
1997
, “
Properties of Acrylic Bone Cement: State of the Art Review
,”
J. Biomed. Mater. Res.
,
38
(
2
), pp.
155
182
.10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C
2.
Tyson
,
Y.
,
Rolfson
,
O.
,
Kärrholm
,
J.
,
Hailer
,
N. P.
, and
Mohaddes
,
M.
,
2019
, “
Uncemented or Cemented Revision Stems? Analysis of 2,296 First-Time Hip Revision Arthroplasties Performed Due to Aseptic Loosening, Reported to the Swedish Hip Arthroplasty Register
,”
Acta Orthop.
,
90
(
5
), pp.
421
426
.10.1080/17453674.2019.1624336
3.
Gundtoft
,
P. H.
,
Varnum
,
C.
,
Pedersen
,
A. B.
, and
Overgaard
,
S.
,
2016
, “
The Danish Hip Arthroplasty Register
,”
Clin. Epidemiol.
,
8
, pp.
509
514
.10.2147/CLEP.S99498
4.
Havelin
,
L. I.
,
Engesaeter
,
L. B.
,
Espehaug
,
B.
,
Furnes
,
O.
,
Lie
,
S. A.
, and
Vollset
,
S. E.
,
2000
, “
The Norwegian Arthroplasty Register: 11 Years and 73,000 Arthroplasties
,”
Acta Orthop. Scand.
,
71
(
4
), pp.
337
353
.10.1080/000164700317393321
5.
Stelmach
,
P.
,
Wedemeyer
,
C.
,
Fuest
,
L.
,
Kurscheid
,
G.
,
Gehrke
,
T.
,
Klenke
,
S.
,
Jäger
,
M.
,
Kauther
,
M. D.
, and
Bachmann
,
H. S.
,
2016
, “
The BCL2 -938C>a Promoter Polymorphism is Associated With Risk for and Time to Aseptic Loosening of Total Hip Arthroplasty
,”
PLoS One
,
11
(
2
), p.
e0149528
.10.1371/journal.pone.0149528
6.
Topoleski
,
L. D. T.
,
Ducheyne
,
P.
, and
Cukler
,
J. M.
,
1990
, “
A Fractographic Analysis of In Vivo Poly(Methyl Methacrylate) Bone Cement Failure Mechanisms
,”
J. Biomed. Mater. Res.
,
24
(
2
), pp.
135
154
.10.1002/jbm.820240202
7.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
O'Connor
,
D. O.
,
Haire
,
T.
, and
Harris
,
W. H.
,
1991
, “
The Initiation of Failure in Cemented Femoral Components of Hip Arthroplasties
,”
J. Bone Jt. Surg. Br.
,
73-B
(
4
), pp.
551
558
.10.1302/0301-620X.73B4.2071634
8.
Jaffe
,
W. L.
,
Rose
,
R. M.
, and
Radin
,
E. L.
,
1974
, “
On the Stability of the Mechanical Properties of Self-Curing Acrylic Bone Cement
,”
J. Bone Jt. Surg. Am.
,
56
(
8
), pp.
1711
1714
.10.2106/00004623-197456080-00024
9.
Lautenschlager
,
E. P.
,
Marshall
,
G. W.
,
Marks
,
K. E.
,
Schwartz
,
J.
, and
Nelson
,
C. L.
,
1976
, “
Mechanical Strength of Acrylic Bone Cements Impregnated With Antibiotics
,”
J. Biomed. Mater. Res.
,
10
(
6
), pp.
837
845
.10.1002/jbm.820100603
10.
Davies
,
J. P.
,
O'Connor
,
D. O.
,
Burke
,
D. W.
, and
Harris
,
W. H.
,
1989
, “
Influence of Antibiotic Impregnation on the Fatigue Life of Simplex P and Palacos R Acrylic Bone Cements, With and Without Centrifugation
,”
J. Biomed. Mater. Res.
,
23
(
4
), pp.
379
397
.10.1002/jbm.820230402
11.
Carter
,
D. R.
,
Gates
,
E. I.
, and
Harris
,
W. H.
,
1982
, “
Strain-Controlled Fatigue of Acrylic Bone Cement
,”
J. Biomed. Mater. Res.
,
16
(
5
), pp.
647
657
.10.1002/jbm.820160512
12.
Armstrong
,
M. S.
,
Spencer
,
R. F.
,
Cunningham
,
J. L.
,
Gheduzz
,
S.
,
Miles
,
A. W.
, and
Learmonth
,
I. D.
,
2002
, “
Mechanical Characteristics of Antibiotic-Laden Bone Cement
,”
Acta Orthop. Scand.
,
73
(
6
), pp.
688
690
.10.3109/17453670209178038
13.
Sanz-Ruiz
,
P.
,
Paz
,
E.
,
Abenojar
,
J.
,
del Real
,
J. C.
,
Vaquero
,
J.
, and
Forriol
,
F.
,
2014
, “
Effects of Vancomycin, Cefazolin and Test Conditions on the Wear Behavior of Bone Cement
,”
J. Arthroplasty
,
29
(
1
), pp.
16
22
.10.1016/j.arth.2013.04.008
14.
van de Belt
,
H.
,
Neut
,
D.
,
Uges
,
D. R.
,
Schenk
,
W.
,
van Horn
,
J. R.
,
van der Mei
,
H. C.
, and
Busscher
,
H. J.
,
2000
, “
Surface Roughness, Porosity and Wettability of Gentamicin-Loaded Bone Cements and Their Antibiotic Release
,”
Biomaterials
,
21
(
19
), pp.
1981
1987
.10.1016/S0142-9612(00)00082-X
15.
Ishihara
,
S.
,
McEvily
,
A. J.
,
Goshima
,
T.
,
Kanekasu
,
K.
, and
Nara
,
T.
,
2000
, “
On Fatigue Lifetimes and Fatigue Crack Growth Behavior of Bone Cement
,”
J. Mater. Sci. Mater. Med.
,
11
(
10
), pp.
661
666
.10.1023/A:1008978302196
16.
Sinnett-Jones
,
P. E.
,
Browne
,
M.
,
Moffat
,
A. J.
,
Jeffers
,
J. R.
,
Saffari
,
N.
,
Buffière
,
J. Y.
, and
Sinclair
,
I.
,
2009
, “
Crack Initiation Processes in Acrylic Bone Cement
,”
J. Biomed. Mater. Res. A
,
89A
(
4
), pp.
1088
1097
.10.1002/jbm.a.32037
17.
Karpiński, R., Szabelski, J., and Maksymiuk, J., 2019, “Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement,”
Mater.
, 12(23), p. 3963.10.3390/ma12233963
18.
Dunne
,
N. J.
,
Orr
,
J. F.
,
Mushipe
,
M. T.
, and
Eveleigh
,
R. J.
,
2003
, “
The Relationship Between Porosity and Fatigue Characteristics of Bone Cements
,”
Biomaterials
,
24
(
2
), pp.
239
245
.10.1016/S0142-9612(02)00296-X
19.
Murphy
,
B. P.
, and
Prendergast
,
P. J.
,
2000
, “
On the Magnitude and Variability of the Fatigue Strength of Acrylic Bone Cement
,”
Int. J. Fatigue
,
22
(
10
), pp.
855
864
.10.1016/S0142-1123(00)00055-4
20.
Hosseinzadeh
,
H. R. S.
,
Emami
,
M.
,
Lahiji
,
F.
,
Shahi
,
A. S.
,
Masoudi
,
A.
, and
Emami
,
S.
,
2013
,
The Acrylic Bone Cement in Arthroplasty
,
InTech
,
Rijeka, Croatia
, pp.
101
128
(Arthroplasty—Update).
21.
Hoey
,
D.
, and
Taylor
,
D.
,
2009
, “
Quantitative Analysis of the Effect of Porosity on the Fatigue Strength of Bone Cement
,”
Acta Biomater.
,
5
(
2
), pp.
719
26
.10.1016/j.actbio.2008.08.024
22.
Jeffers
,
J. R. T.
,
Browne
,
M.
,
Roques
,
A.
, and
Taylor
,
M.
,
2005
, “
On the Importance of Considering Porosity When Simulating the Fatigue of Bone Cement
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
563
570
.10.1115/1.1934182
23.
Heidari-Rarani
,
M.
, and
Sayedain
,
M.
,
2019
, “
Finite Element Modeling Strategies for 2D and 3D Delamination Propagation in Composite DCB Specimens Using VCCT, CZM and XFEM Approaches
,”
Theor. Appl. Fract. Mech.
,
103
, p.
102246
.10.1016/j.tafmec.2019.102246
24.
Idkaidek
,
A.
, and
Jasiuk
,
I.
,
2017
, “
Cortical Bone Fracture Analysis Using XFEM—Case Study
,”
Int. J. Numer. Method Biomed. Eng.
,
33
(
4
).10.1002/cnm.2809
25.
Rudraraju
,
S. S.
,
Salvi
,
A.
,
Garikipati
,
K.
, and
Waas
,
A. M.
,
2010
, “
In-Plane Fracture of Laminated Fiber Reinforced Composites With Varying Fracture Resistance: Experimental Observations and Numerical Crack Propagation Simulations
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
901
911
.10.1016/j.ijsolstr.2009.12.006
26.
Bishop
,
A. R.
,
Kim
,
S.
,
Squire
,
M. W.
,
Rose
,
W. E.
, and
Ploeg
,
H. L.
,
2018
, “
Vancomycin Elution, Activity and Impact on Mechanical Properties When Added to Orthopedic Bone Cement
,”
J. Mech. Behav. Biomed. Mater.
,
87
, pp.
80
86
.10.1016/j.jmbbm.2018.06.033
27.
Slane
,
J. A.
,
Vivanco
,
J. F.
,
Rose
,
W. E.
,
Squire
,
M. W.
, and
Ploeg
,
H. L.
,
2014
, “
The Influence of Low Concentrations of a Water Soluble Poragen on the Material Properties, Antibiotic Release, and Biofilm Inhibition of an Acrylic Bone Cement
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
42
, pp.
168
176
.10.1016/j.msec.2014.05.026
28.
Kim
,
S.
,
Bishop
,
A. R.
,
Squire
,
M. W.
,
Rose
,
W. E.
, and
Ploeg
,
H. L.
,
2020
, “
Mechanical, Elution, and Antibacterial Properties of Simplex Bone Cement Loaded With Vancomycin
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103588
.10.1016/j.jmbbm.2019.103588
29.
Hu
,
X. Y.
,
Liu
,
Z. L.
, and
Zhuang
,
Z.
,
2017
, “
XFEM Study of Crack Propagation in Logs After Growth Stress Relaxation and Drying Stress Accumulation
,”
Wood Sci. Technol.
,
51
(
6
), pp.
1447
1468
.10.1007/s00226-017-0943-4
30.
Mubashar
,
A.
,
Ashcroft
,
I. A.
, and
Crocombe
,
A. D.
,
2014
, “
Modelling Damage and Failure in Adhesive Joints Using a Combined XFEM-Cohesive Element Methodology
,”
J. Adhes.
,
90
(
8
), pp.
682
697
.10.1080/00218464.2013.826580
31.
Orr
,
J. F.
,
Dunne
,
N. J.
, and
Quinn
,
J. C.
,
2003
, “
Shrinkage Stresses in Bone Cement
,”
Biomaterials
,
24
(
17
), pp.
2933
2940
.10.1016/S0142-9612(03)00055-3
32.
Ziegler
,
T.
, and
Jaeger
,
R.
,
2020
, “
Fracture Toughness and Crack Resistance Curves of Acrylic Bone Cements
,”
J. Biomed. Mater. Res. Part B Appl. Biomater.
,
108
(
5
), pp.
1961
1971
.10.1002/jbm.b.34537
33.
Lewis
,
G.
,
1994
, “
Effect of Methylene Blue on the Fracture Toughness of Acrylic Bone Cement
,”
Biomaterials
,
15
(
12
), pp.
1024
1028
.10.1016/0142-9612(94)90085-X
34.
Lewis
,
G.
, and
Mladsi
,
S.
,
2000
, “
Correlation Between Impact Strength and Fracture Toughness of PMMA-Based Bone Cements
,”
Biomaterials
,
21
(
8
), pp.
775
781
.10.1016/S0142-9612(99)00226-4
35.
Lewis
,
G.
,
2009
, “
Properties of Antibiotic-Loaded Acrylic Bone Cements for Use in Cemented Arthroplasties: A State-of-the-Art Review
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
89B
(
2
), pp.
558
574
.10.1002/jbm.b.31220
36.
Krause
,
W. R.
, and
Hofmann
,
A.
,
1989
, “
Antibiotic Impregnated Acrylic Bone Cements: A Comparative Study of the Mechanical Properties
,”
J. Bioactive Compatible Polym.
,
4
(
4
), pp.
345
361
.10.1177/088391158900400403
37.
Hoey
,
D.
, and
Taylor
,
D.
,
2008
, “
Fatigue in Porous PMMA: The Effect of Stress Concentrations
,”
Int. J. Fatigue
,
30
(
6
), pp.
989
995
.10.1016/j.ijfatigue.2007.08.022
38.
Ling
,
R. S.
, and
Lee
,
A. J.
,
1998
, “
Porosity Reduction in Acrylic Cement is Clinically Irrelevant
,”
Clin. Orthop. Relat. Res.
, (
355
), pp.
249
253
.10.1097/00003086-199810000-00026
39.
Gustafsson
,
A.
,
Wallin
,
M.
, and
Isaksson
,
H.
,
2019
, “
Age-Related Properties at the Microscale Affect Crack Propagation in Cortical Bone
,”
J. Biomech.
,
95
, p.
109326
.10.1016/j.jbiomech.2019.109326
40.
Gustafsson
,
A.
,
Khayyeri
,
H.
,
Wallin
,
M.
, and
Isaksson
,
H.
,
2019
, “
An Interface Damage Model That Captures Crack Propagation at the Microscale in Cortical Bone Using XFEM
,”
J. Mech. Behav. Biomed. Mater.
,
90
, pp.
556
565
.10.1016/j.jmbbm.2018.09.045
41.
Meyer
,
J.
,
Piller
,
G.
,
Spiegel
,
C. A.
,
Hetzel
,
S.
, and
Squire
,
M.
,
2011
, “
Vacuum-Mixing Significantly Changes Antibiotic Elution Characteristics of Commercially Available Antibiotic-Impregnated Bone Cements
,”
J. Bone Jt. Surg. Am.
,
93
(
22
), pp.
2049
2056
.10.2106/JBJS.J.01777
42.
Topoleski
,
L. D. T.
,
Ducheyne
,
P.
, and
Cuckler
,
J. M.
,
1993
, “
Microstructural Pathway of Fracture in Poly(Methyl Methacrylate) Bone Cement
,”
Biomaterials
,
14
(
15
), pp.
1165
1172
.10.1016/0142-9612(93)90162-U
43.
Jiranek
,
W. A.
,
Hanssen
,
A. D.
, and
Greenwald
,
A. S.
,
2006
, “
Antibiotic-Loaded Bone Cement for Infection Prophylaxis in Total Joint Replacement
,”
J. Bone Jt. Surg. Am.
,
88
(
11
), pp.
2487
2500
.10.2106/JBJS.E.01126
44.
Entezari
,
A.
,
Roohani-Esfahani
,
S. I.
,
Zhang
,
Z.
,
Zreiqat
,
H.
,
Dunstan
,
C. R.
, and
Li
,
Q.
,
2016
, “
Fracture Behaviors of Ceramic Tissue Scaffolds for Load Bearing Applications
,”
Sci. Rep.
,
6
(
1
), p.
28816
.10.1038/srep28816
45.
Pazhouheshgar
,
A.
,
Vanini
,
S. A. S.
, and
Moghanian
,
A.
,
2019
, “
The Experimental and Numerical Study of Fracture Behavior of 58 s Bioactive Glass/Polysulfone Composite Using the Extended Finite Elements Method
,”
Mater. Res. Express,
6(9), p. 095208.10.1088/2053-1591/ab3495
46.
Garikipati
,
K.
,
Waas
,
A.
,
Bednarcyk
,
B.
, and
Rudraraju
,
S.
,
2013
, “
On the Theory and Numerical Simulation of Cohesive Crack Propagation With Application to Fiber-Reinforced Composites
,” NASA, Washington, DC, Report No.
NASA/TP-2013-217431
.https://ntrs.nasa.gov/citations/20140000319
47.
Hasenwinkel
,
J. M.
,
Lautenschlager
,
E. P.
,
Wixson
,
R. L.
, and
Gilbert
,
J. L.
,
2002
, “
Effect of Initiation Chemistry on the Fracture Toughness, Fatigue Strength, and Residual Monomer Content of a Novel High-Viscosity, Two-Solution Acrylic Bone Cement
,”
J. Biomed. Mater. Res.
,
59
(
3
), pp.
411
421
.10.1002/jbm.1257
You do not currently have access to this content.