Abstract

Hill-type models are frequently used in biomechanical simulations. They are attractive for their low computational cost and close relation to commonly measured musculotendon parameters. Still, more attention is needed to improve the activation dynamics of the model specifically because of the nonlinearity observed in the electromyography (EMG)–force relation. Moreover, one of the important and practical questions regarding the assessment of the model's performance is how adequately can the model simulate any fundamental type of human movement without modifying model parameters for different tasks? This paper tries to answer this question by proposing a simple physiologically based activation dynamics model. The model describes the kinetics of the calcium dynamics while activating and deactivating the muscle contraction process. Hence, it allowed simulating the recently discovered role of store-operated calcium entry (SOCE) channels as immediate counterflux to calcium loss across the tubular system during excitation–contraction coupling. By comparing the ability to fit experimental data without readjusting the parameters, the proposed model has proven to have more steady performance than phenomenologically based models through different submaximal isometric contraction levels. This model indicates that more physiological insights are key for improving Hill-type model performance.

References

1.
Ma
,
Y.
,
Xie
,
S.
, and
Zhang
,
Y.
,
2016
, “
A Patient-Specific EMG-Driven Neuromuscular Model for the Potential Use of Human-Inspired Gait Rehabilitation Robots
,”
Comput. Biol. Med.
,
70
, pp.
88
98
.10.1016/j.compbiomed.2016.01.001
2.
Langholz
,
J. B.
,
Westman
,
G.
, and
Karlsteen
,
M.
,
2016
, “
Musculoskeletal Modelling in Sports-Evaluation of Different Software Tools With Focus on Swimming
,”
Procedia Eng.
,
147
, pp.
281
287
.10.1016/j.proeng.2016.06.278
3.
Asmussen
,
M.
,
Cigoja
,
S.
,
Firminger
,
C.
,
Fletcher
,
J.
,
Edwards
,
B.
, and
Nigg
,
B.
,
2019
, “
Using Musculoskeletal Modelling to Understand the Energetic Cost of Running With Different Footwear
,”
J. Sci. Med. Sport
,
22
, p.
S73
.10.1016/j.jsams.2019.08.287
4.
Shao
,
Q.
,
Bassett
,
D. N.
,
Manal
,
K.
, and
Buchanan
,
T. S.
,
2009
, “
An EMG-Driven Model to Estimate Muscle Forces and Joint Moments in Stroke Patients
,”
Comput. Biol. Med.
,
39
(
12
), pp.
1083
1088
.10.1016/j.compbiomed.2009.09.002
5.
Chu
,
W. T. V.
, and
Sanger
,
T. D.
,
2009
, “
Force Variability During Isometric Biceps Contraction in Children With Secondary Dystonia Due to Cerebral Palsy
,”
Mov. Disord.
,
24
(
9
), pp.
1299
1305
.10.1002/mds.22573
6.
Ma
,
Y.
,
Xie
,
S.
, and
Sun
,
C.
,
2016
, “
Evaluation of the Patient-Specific Electromyography (EMG)-Driven Neuromuscular Model for Cerebral Palsy Patients
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
, Banff, AB, Canada, July 12–15, pp.
270
275
.10.1109/AIM.2016.7576778
7.
Wiedemann
,
L. G.
,
Jayaneththi
,
V. R.
,
Kimpton
,
J.
,
Chan
,
A.
,
Müller
,
M. A.
,
Hogan
,
A.
,
Lim
,
E.
,
Wilson
,
N. C.
, and
McDaid
,
A. J.
,
2018
, “
Neuromuscular Characterisation in Cerebral Palsy Using Hybrid Hill-Type Models on Isometric Contractions
,”
Comput. Biol. Med.
,
103
, pp.
269
276
.10.1016/j.compbiomed.2018.10.027
8.
Pi
,
M.
,
Yuan
,
Y.
, and
Li
,
Z.
,
2019
, “
Control of the Robotic Leg Prostheses Based on a Neuromuscular Model
,”
2019 Fourth IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
, Toyonaka, Japan, July 3–5, pp.
141
145
.10.1109/ICARM.2019.8834043
9.
Mghames
,
S.
,
Santina
,
C. D.
,
Garabini
,
M.
, and
Bicchi
,
A.
,
2019
, “
A Neuromuscular-Model Based Control Strategy to Minimize Muscle Effort in Assistive Exoskeletons
,”
IEEE International Conference on Rehabilitation Robotics
, Toronto, ON, Canada, June 24–28, pp.
963
970
.10.1109/ICORR.2019.8779456
10.
Ding
,
Z.
,
Azmi
,
N. L.
, and
Bull
,
A. M. J.
,
2019
, “
Validation and Use of a Musculoskeletal Gait Model to Study the Role of Functional Electrical Stimulation
,”
IEEE Trans. Biomed. Eng.
,
66
(
3
), pp.
892
897
.10.1109/TBME.2018.2865614
11.
Del Santo
,
F.
,
Gelli
,
F.
,
Ginanneschi
,
F.
,
Popa
,
T.
, and
Rossi
,
A.
,
2007
, “
Relation Between Isometric Muscle Force and Surface EMG in Intrinsic Hand Muscles as Function of the Arm Geometry
,”
Brain Res.
,
1163
(
1
), pp.
79
85
.10.1016/j.brainres.2007.06.012
12.
Stegeman
,
D. F.
,
Blok
,
J. H.
,
Hermens
,
H. J.
, and
Roeleveld
,
K.
,
2000
, “
Surface EMG Models: Properties and Applications
,”
J. Electromyogr. Kinesiol.
,
10
(
5
), pp.
313
326
.10.1016/S1050-6411(00)00023-7
13.
Gabriel
,
D. A.
,
Kamen
,
G.
, and
Frost
,
G.
,
2006
, “
Neural Adaptations to Resistive Exercise: Mechanisms and Recommendations for Training Practices
,”
Sports Med.
,
36
(
2
), pp.
133
149
.10.2165/00007256-200636020-00004
14.
Vigotsky
,
A. D.
,
Halperin
,
I.
,
Lehman
,
G. J.
,
Trajano
,
G. S.
, and
Vieira
,
T. M.
,
2018
, “
Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences
,”
Front. Physiol.
,
8
, p.
985
.10.3389/fphys.2017.00985
15.
Lu
,
T. W.
, and
Chang
,
C. F.
,
2012
, “
Biomechanics of Human Movement and Its Clinical Applications
,”
Kaohsiung J. Med. Sci.
,
28
(
2
), pp.
S13
S25
.10.1016/j.kjms.2011.08.004
16.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Gonzalez
,
R. V.
,
2002
, “
A Real-Time EMG-Driven Virtual Arm
,”
Comput. Biol. Med.
,
32
(
1
), pp.
25
36
.10.1016/S0010-4825(01)00024-5
17.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2004
, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.10.1123/jab.20.4.367
18.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://pubmed.ncbi.nlm.nih.gov/2676342/
19.
Desplenter
,
T.
, and
Trejos
,
A. L.
,
2018
, “
Evaluating Muscle Activation Models for Elbow Motion Estimation
,”
Sensors (Switzerland)
,
18
(
4
), p.
1004
.10.3390/s18041004
20.
Fukuda
,
T. Y.
,
Echeimberg
,
J. O.
,
Pompeu
,
J. E.
,
Lucareli
,
P. R. G.
,
Garbelotti
,
S.
,
Gimenes
,
R. O.
, and
Apolinário
,
A.
,
2010
, “
Root Mean Square Value of the Electromyographic Signal in the Isometric Torque of the Quadriceps, Hamstrings and Brachial Biceps Muscles in Female Subjects
,”
J. Appl. Res.
,
10
(
1
), pp.
32
39
.https://www.researchgate.net/publication/221963814_Root_Mean_Square_Value_of_the_Electromyographic_Signal_in_the_Isometric_Torque_of_the_Quadriceps_Hamstrings_and_Brachial_Biceps_Muscles_in_Female
21.
Sbriccoli
,
P.
,
Bazzucchi
,
I.
,
Rosponi
,
A.
,
Bernardi
,
M.
,
De Vito
,
G.
, and
Felici
,
F.
,
2003
, “
Amplitude and Spectral Characteristics of Biceps Brachii SEMG Depend Upon Speed of Isometric Force Generation
,”
J. Electromyogr. Kinesiol.
,
13
(
2
), pp.
139
147
.10.1016/S1050-6411(02)00098-6
22.
Bilodeau
,
M.
,
Schindler-Ivens
,
S.
,
Williams
,
D. M.
,
Chandran
,
R.
, and
Sharma
,
S. S.
,
2003
, “
EMG Frequency Content Changes With Increasing Force and During Fatigue in the Quadriceps Femoris Muscle of Men and Women
,”
J. Electromyogr. Kinesiol.
,
13
(
1
), pp.
83
92
.10.1016/S1050-6411(02)00050-0
23.
McGill
,
K. C.
,
2004
, “
Surface Electromyogram Signal Modelling
,”
Med. Biol. Eng. Comput.
,
42
(
4
), pp.
446
454
.10.1007/BF02350985
24.
Woods
,
J. J.
, and
Bigland-Ritchie
,
B.
,
1983
, “
Linear and Non-Linear Surface EMG/Force Relationships in Human Muscles. An Anatomical/Functional Argument for the Existence of Both
,”
Am. J. Phys. Med.
,
62
(
6
), pp.
287
299
.https://pubmed.ncbi.nlm.nih.gov/6650674/
25.
Jahanmiri-Nezhad
,
F.
,
Hu
,
X.
,
Suresh
,
N. L.
,
Rymer
,
W. Z.
, and
Zhou
,
P.
,
2014
, “
EMG-Force Relation in the First Dorsal Interosseous Muscle of Patients With Amyotrophic Lateral Sclerosis
,”
NeuroRehabilitation
,
35
(
2
), pp.
307
314
.10.3233/NRE-141125
26.
Watanabe
,
K.
, and
Akima
,
H.
,
2009
, “
Normalized EMG to Normalized Torque Relationship of Vastus Intermedius Muscle During Isometric Knee Extension
,”
Eur. J. Appl. Physiol.
,
106
(
5
), pp.
665
673
.10.1007/s00421-009-1064-z
27.
Perreault
,
E. J.
,
Heckman
,
C. J.
, and
Sandercock
,
T. G.
,
2003
, “
Hill Muscle Model Errors During Movement Are Greatest Within the Physiologically Relevant Range of Motor Unit Firing Rates
,”
J. Biomech.
,
36
(
2
), pp.
211
218
.10.1016/S0021-9290(02)00332-9
28.
Cooke
,
R.
,
2004
, “
Milestone in Physiology. The Sliding Filament Model: 1972-2004
,”
J. Gen. Physiol.
,
123
(
6
), pp.
643
656
.10.1085/jgp.200409089
29.
Calderón
,
J. C.
,
Bolaños
,
P.
, and
Caputo
,
C.
,
2014
, “
The Excitation-Contraction Coupling Mechanism in Skeletal Muscle
,”
Biophys. Rev.
,
6
(
1
), pp.
133
160
.10.1007/s12551-013-0135-x
30.
Berchtold
,
M. W.
,
Brinkmeier
,
H.
, and
Müntener
,
M.
,
2000
, “
Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease
,”
Physiol. Rev.
,
80
(
3
), pp.
1215
1265
.10.1152/physrev.2000.80.3.1215
31.
Greig
,
C. A.
, and
Jones
,
D. A.
,
2016
, “
Muscle Physiology and Contraction
,”
Surgery (U. K.)
,
34
(
3
), pp.
107
114
.10.1016/j.mpsur.2016.01.004
32.
McMillen
,
T.
,
Williams
,
T.
, and
Holmes
,
P.
,
2008
, “
Nonlinear Muscles, Passive Viscoelasticity and Body Taper Conspire to Create Neuromechanical Phase Lags in Anguilliform Swimmers
,”
PLoS Comput. Biol.
,
4
(
8
), p.
e1000157
.10.1371/journal.pcbi.1000157
33.
Williams
,
T. L.
,
2010
, “
A New Model for Force Generation by Skeletal Muscle, Incorporating Work-Dependent Deactivation
,”
J. Exp. Biol.
,
213
(
4
), pp.
643
650
.10.1242/jeb.037598
34.
Koenig
,
X.
,
Choi
,
R. H.
,
Schicker
,
K.
,
Singh
,
D. P.
,
Hilber
,
K.
, and
Launikonis
,
B. S.
,
2019
, “
Mechanistic Insights Into Store-Operated Ca2+ Entry During Excitation-Contraction Coupling in Skeletal Muscle
,”
Biochim. Biophys. Acta - Mol. Cell Res.
,
1866
(
7
), pp.
1239
1248
.10.1016/j.bbamcr.2019.02.014
35.
Michelucci
,
A.
,
García-Castañeda
,
M.
,
Boncompagni
,
S.
, and
Dirksen
,
R. T.
,
2018
, “
Role of STIM1/ORAI1-Mediated Store-Operated Ca2+ Entry in Skeletal Muscle Physiology and Disease
,”
Cell Calcium
,
76
, pp.
101
115
.10.1016/j.ceca.2018.10.004
36.
Koenig
,
X.
,
Choi
,
R. H.
, and
Launikonis
,
B. S.
,
2018
, “
Store-Operated Ca2+ Entry Is Activated by Every Action Potential in Skeletal Muscle
,”
Commun. Biol.
,
1
(
1
), p.
31
.10.1038/s42003-018-0033-7
37.
Sztretye
,
M.
,
Geyer
,
N.
,
Vincze
,
J.
,
Al-Gaadi
,
D.
,
Oláh
,
T.
,
Szentesi
,
P.
,
Kis
,
G.
,
Antal
,
M.
,
Balatoni
,
I.
,
Csernoch
,
L.
, and
Dienes
,
B.
,
2017
, “
SOCE Is Important for Maintaining Sarcoplasmic Calcium Content and Release in Skeletal Muscle Fibers
,”
Biophys. J.
,
113
(
11
), pp.
2496
2507
.10.1016/j.bpj.2017.09.023
38.
Edwards
,
J. N.
,
Murphy
,
R. M.
,
Cully
,
T. R.
,
von Wegner
,
F.
,
Friedrich
,
O.
, and
Launikonis
,
B. S.
,
2010
, “
Ultra-Rapid Activation and Deactivation of Store-Operated Ca2+ Entry in Skeletal Muscle
,”
Cell Calcium
,
47
(
5
), pp.
458
467
.10.1016/j.ceca.2010.04.001
39.
Launikonis
,
B. S.
, and
Ríos
,
E.
,
2007
, “
Store-Operated Ca2+ Entry During Intracellular Ca2+ Release in Mammalian Skeletal Muscle
,”
J. Physiol.
,
583
(
1
), pp.
81
97
.10.1113/jphysiol.2007.135046
40.
Pan
,
Z.
,
Yang
,
D.
,
Nagaraj
,
R. Y.
,
Nosek
,
T. A.
,
Nishi
,
M.
,
Takeshima
,
H.
,
Cheng
,
H.
, and
Ma
,
J.
,
2002
, “
Dysfunction of Store-Operated Calcium Channel in Muscle Cells Lacking Mg29
,”
Nat. Cell Biol.
,
4
(
5
), pp.
379
383
.10.1038/ncb788
41.
Edman
,
K. A. P.
,
1996
, “
Fatigue vs. Shortening-Induced Deactivation in Striated Muscle
,”
Acta Physiol. Scand.
,
156
(
3
), pp.
183
192
.10.1046/j.1365-201X.1996.t01-1-198000.x
42.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
1996
, “
The Influence of Muscles on Knee Flexion During the Swing Phase of Gait
,”
J. Biomech.
,
29
(
6
), pp.
723
–7
33
.10.1016/0021-9290(95)00144-1
43.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2003
, “
A One-Parameter Neural Activation to Muscle Activation Model: Estimating Isometric Joint Moments From Electromyograms
,”
J. Biomech.
,
36
(
8
), pp.
1197
1202
.10.1016/S0021-9290(03)00152-0
44.
Menegaldo
,
L. L.
,
de Oliveira
,
L. F.
, and
Minato
,
K. K.
,
2014
, “
EMGD-FE: An Open Source Graphical User Interface for Estimating Isometric Muscle Forces in the Lower Limb Using an EMG-Driven Model
,”
Biomed. Eng. Online
,
13
(
1
), p.
37
.10.1186/1475-925X-13-37
45.
Heine
,
C. B.
, and
Menegaldo
,
L. L.
,
2018
, “
Numerical Validation of a Subject-Specific Parameter Identification Approach of a Quadriceps Femoris EMG-Driven Model
,”
Med. Eng. Phys.
,
53
, pp.
66
74
.10.1016/j.medengphy.2018.01.006
46.
Menegaldo
,
L. L.
, and
Oliveira
,
L. F.
,
2011
, “
An EMG-Driven Model to Evaluate Quadriceps Strengthening After an Isokinetic Training
,”
Procedia IUTAM
,
2
, pp.
131
141
.10.1016/j.piutam.2011.04.014
47.
de Oliveira
,
V. B.
,
de Oliveira
,
L. F.
, and
Menegaldo
,
L. L.
,
2018
, “
Estimation of Vastus Intermedius Electromyography: Comparison of Three Methods and Their Impact on the Knee Isometric Extension Moment Predicted by an EMG-Driven Model
,”
Isokinet. Exercise Sci.
,
26
(
4
), pp.
299
306
.10.3233/IES-182167
48.
Menegaldo
,
L. L.
, and
Oliveira
,
L. F. D.
,
2009
, “
Effect of Muscle Model Parameter Scaling for Isometric Plantar Flexion Torque Prediction
,”
J. Biomech.
,
42
(
15
), pp.
2597
2601
.10.1016/j.jbiomech.2009.06.043
49.
Winters
,
J. M.
, and
Stark
,
L.
,
1987
, “
Muscle Models: What Is Gained and What Is Lost by Varying Model Complexity
,”
Biol. Cybern.
,
55
(
6
), pp.
403
420
.10.1007/BF00318375
50.
Knoek van Soest
,
A. J.
,
Casius
,
L. J. R.
, and
Lemaire
,
K. K.
,
2019
, “
Huxley-Type Cross-Bridge Models in Largeish-Scale Musculoskeletal Models; an Evaluation of Computational Cost
,”
J. Biomech.
,
83
, pp.
43
48
.10.1016/j.jbiomech.2018.11.021
51.
MacEri
,
F.
,
Marino
,
M.
, and
Vairo
,
G.
,
2012
, “
An Insight on Multiscale Tendon Modeling in Muscle-Tendon Integrated Behavior
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
505
517
.10.1007/s10237-011-0329-8
52.
Karathanasopoulos
,
N.
, and
Ganghoffer
,
J. F.
,
2019
, “
Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs
,”
Front. Bioeng. Biotechnol.
,
7
, p.
85
.10.3389/fbioe.2019.00085
53.
Karathanasopoulos
,
N.
, and
Ganghoffer
,
J. F.
,
2019
, “
Investigating the Effect of Aging on the Viscosity of Tendon Fascicles and Fibers
,”
Front. Bioeng. Biotechnol.
,
7
, p.
107
.10.3389/fbioe.2019.00107
54.
Williams
,
T. L.
,
Bowtell
,
G.
, and
Curtin
,
N. A.
,
1998
, “
Predicting Force Generation by Lamprey Muscle During Applied Sinusoidal Movement Using a Simple Dynamic Model
,”
J. Exp. Biol.
,
201
(
6
), pp.
869
875
.10.1242/jeb.201.6.869
You do not currently have access to this content.